• Title/Summary/Keyword: Vision Model

Search Result 1,322, Processing Time 0.029 seconds

Developing a Green IT Maturity Model: Assessment and Improvement Strategies (녹색정보화 성숙도 진단 모델 개발 및 실증 연구)

  • Park, Sang-Hyun;Eo, Jae-Kyung;Jeon, Hyo-Jung
    • Information Systems Review
    • /
    • v.13 no.1
    • /
    • pp.115-141
    • /
    • 2011
  • One consequence of the new economic imperative of developing an environment-friendly and sustainable economy has been the growing importance of green management as a corporate management strategy. In Korea, the government has put forth a green growth vision, and followed suit with policy measures reflecting this vision. Companies, in their turn, have announced various new management plans reflecting this green vision. But, thus far, no tangible progress has been made. This is mainly due to the lack of concreteness, both in the government's policy and green management plans by companies. The government's green IT vision, for instance, was formulated without an accurate assessment of the current level of maturity in terms of green IT in Korea. This study presents a model for assessing the level of green IT maturity, developed by taking into consideration the informatization and regulatory environments of Korean firms. We use this model to evaluate a sample of Korean firms selected as representatives of their respective industry sectors to assess the overall level of green IT maturity among Korean companies. Improvement strategies, based on the results of assessment, are presented as well.

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

Cognitive Model-based Evaluation of Traffic Simulation Model (교통 시뮬레이션 모텔의 인지공학적 평가에 관한 연구)

  • 강명호;차우창
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.163-168
    • /
    • 2002
  • The road sign in dynamic traffic system is an important element which affects on human cognitive performance on driving. Web-based vision system simulator was developed to examine the cognition time of the road sign in dynamic environment. This experiment was designed in within-subject design with two factors; vehicle speed and the amount of information of the traffic sign. It measured the cognition time of the road sign through two evaluation methods; the subjective test with vision system simulator and computational cognitive model. In these two evaluations of human cognitive performance under the dynamic traffic environment, it demonstrated that subject's cognition time was affected by both the amount of information of traffic sign and driving speed.

  • PDF

End to End Autonomous Driving System using Out-layer Removal (Out-layer를 제거한 End to End 자율주행 시스템)

  • Seung-Hyeok Jeong;Dong-Ho Yun;Sung-Hun Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.65-70
    • /
    • 2023
  • In this paper, we propose an autonomous driving system using an end-to-end model to improve lane departure and misrecognition of traffic lights in a vision sensor-based system. End-to-end learning can be extended to a variety of environmental conditions. Driving data is collected using a model car based on a vision sensor. Using the collected data, it is composed of existing data and data with outlayers removed. A class was formed with camera image data as input data and speed and steering data as output data, and data learning was performed using an end-to-end model. The reliability of the trained model was verified. Apply the learned end-to-end model to the model car to predict the steering angle with image data. As a result of the learning of the model car, it can be seen that the model with the outlayer removed is improved than the existing model.

Quantization and Calibration of Color Information From Machine Vision System for Beef Color Grading (소고기 육색 등급 자동 판정을 위한 기계시각 시스템의 칼라 보정 및 정량화)

  • Kim, Jung-Hee;Choi, Sun;Han, Na-Young;Ko, Myung-Jin;Cho, Sung-Ho;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.160-165
    • /
    • 2007
  • This study was conducted to evaluate beef using a color machine vision system. The machine vision system has an advantage to measure larger area than a colorimeter and also could measure other quality factors like distribution of fats. However, the machine vision measurement is affected by system components. To measure the beef color with the machine vision system, the effect of color balancing control was tested and calibration model was developed. Neural network for color calibration which learned reference color patches showed a high correlation with colorimeter in L*a*b* coordinates and had an adaptability at various measurement environments. The trained network showed a very high correlation with the colorimeter when measuring beef color.

Evaluation of Robot Vision Control Scheme Based on EKF Method for Slender Bar Placement in the Appearance of Obstacles (장애물 출현 시 얇은 막대 배치작업에 대한 EKF 방법을 이용한 로봇 비젼제어기법 평가)

  • Hong, Sung-Mun;Jang, Wan-Shik;Kim, Jae-Meung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.471-481
    • /
    • 2015
  • This paper presents the robot vision control schemes using Extended Kalman Filter (EKF) method for the slender bar placement in the appearance of obstacles during robot movement. The vision system model used for this study involves the six camera parameters($C_1{\sim}C_6$). In order to develop the robot vision control scheme, first, the six parameters are estimated. Then, based on the estimated parameters, the robot's joint angles are estimated for the slender bar placement. Especially, robot trajectory caused by obstacles is divided into three obstacle regions, which are beginning region, middle region and near target region. Finally, the effects of number of obstacles using the proposed robot's vision control schemes are investigated in each obstacle region by performing experiments of the slender bar placement.

Calibration for Color Measurement of Lean Tissue and Fat of the Beef

  • Lee, S.H.;Hwang, H.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.16-21
    • /
    • 2003
  • In the agricultural field, a machine vision system has been widely used to automate most inspection processes especially in quality grading. Though machine vision system was very effective in quantifying geometrical quality factors, it had a deficiency in quantifying color information. This study was conducted to evaluate color of beef using machine vision system. Though measuring color of a beef using machine vision system had an advantage of covering whole lean tissue area at a time compared to a colorimeter, it revealed the problem of sensitivity depending on the system components such as types of camera, lighting conditions, and so on. The effect of color balancing control of a camera was investigated and multi-layer BP neural network based color calibration process was developed. Color calibration network model was trained using reference color patches and showed the high correlation with L*a*b* coordinates of a colorimeter. The proposed calibration process showed the successful adaptability to various measurement environments such as different types of cameras and light sources. Compared results with the proposed calibration process and MLR based calibration were also presented. Color calibration network was also successfully applied to measure the color of the beef. However, it was suggested that reflectance properties of reference materials for calibration and test materials should be considered to achieve more accurate color measurement.

  • PDF

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision

  • Dong, Chuan-Zhi;Bas, Selcuk;Catbas, F. Necati
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.617-630
    • /
    • 2019
  • Currently most of the vision-based structural identification research focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation. The structural condition assessment at global level just with the vision-based structural output cannot give a normalized response irrespective of the type and/or load configurations of the vehicles. Combining the vision-based structural input and the structural output from non-contact sensors overcomes the disadvantage given above, while reducing cost, time, labor force including cable wiring work. In conventional traffic monitoring, sometimes traffic closure is essential for bridge structures, which may cause other severe problems such as traffic jams and accidents. In this study, a completely non-contact structural identification system is proposed, and the system mainly targets the identification of bridge unit influence line (UIL) under operational traffic. Both the structural input (vehicle location information) and output (displacement responses) are obtained by only using cameras and computer vision techniques. Multiple cameras are synchronized by audio signal pattern recognition. The proposed system is verified with a laboratory experiment on a scaled bridge model under a small moving truck load and a field application on a footbridge on campus under a moving golf cart load. The UILs are successfully identified in both bridge cases. The pedestrian loads are also estimated with the extracted UIL and the predicted weights of pedestrians are observed to be in acceptable ranges.

Optical Models of the Finite Schematic Eyes for Presbyopia (노안을 위한 정밀 모형안 설계)

  • Baarg, Saang-Bai
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.439-447
    • /
    • 2008
  • There is a need for a finite schematic presbyopic eye that models vision and image quality under various conditions such as cataract or refractive surgery, as well as near vision corrections with an ophthalmic lens or contact lens. Using recently measured biometric data of presbyopic eyes, new model eyes were designed that are optically and anatomically close to real eyes. The parameters changing significantly with age were incorporated into models for four different age groups. The new model eyes have alpha angle, decentered pupil, aspheric GRIN lens and aspheric retinal surface. It is likely that the new finite presbyopic model eyes will be useful for designing visual instruments such as low vision aids, PALs, IOL and contact lenses, and for the clinical prediction of the retinal image quality of a presbyopic patient.