• Title/Summary/Keyword: Vision Builder AI

Search Result 4, Processing Time 0.024 seconds

A Study on the Web Building Assistant System Using GUI Object Detection and Large Language Model (웹 구축 보조 시스템에 대한 GUI 객체 감지 및 대규모 언어 모델 활용 연구)

  • Hyun-Cheol Jang;Hyungkuk Jang
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.830-833
    • /
    • 2024
  • As Large Language Models (LLM) like OpenAI's ChatGPT[1] continue to grow in popularity, new applications and services are expected to emerge. This paper introduces an experimental study on a smart web-builder application assistance system that combines Computer Vision with GUI object recognition and the ChatGPT (LLM). First of all, the research strategy employed computer vision technology in conjunction with Microsoft's "ChatGPT for Robotics: Design Principles and Model Abilities"[2] design strategy. Additionally, this research explores the capabilities of Large Language Model like ChatGPT in various application design tasks, specifically in assisting with web-builder tasks. The study examines the ability of ChatGPT to synthesize code through both directed prompts and free-form conversation strategies. The researchers also explored ChatGPT's ability to perform various tasks within the builder domain, including functions and closure loop inferences, basic logical and mathematical reasoning. Overall, this research proposes an efficient way to perform various application system tasks by combining natural language commands with computer vision technology and LLM (ChatGPT). This approach allows for user interaction through natural language commands while building applications.

DEVELOPMENT OF A MACHINE VISION SYSTEM FOR AN AUTOMOBILE PLASTIC PART INSPECTION

  • ANDRES N.S.;MARIMUTHU R.P.;EOM Y.K.;JANG B.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1131-1135
    • /
    • 2005
  • Since human is vulnerable to emotional, physical and environmental distractions, most human inspectors cannot sustain a consistent 8-hour inspection in a day specifically for small components like door locking levers. As an alternative for human inspection, presented in this study is the development of a machine vision inspection system (MVIS) purposely for door locking levers. Comprises the development is the structure of the MVIS components, designed to meet the demands, features and specifications of door locking lever manufacturing companies in increasing their production throughput upon keeping the quality assured. This computer-based MVIS is designed to perform quality measures of detecting missing portions and defects like burr on every door locking lever. NI Vision Builder software for Automatic Inspection (AI) is found to be the optimum solution in configuring the needed quality measures. The proposed software has measurement techniques such as edge detecting and pattern-matching which are capable of gauging, detecting missing portion and checking alignment. Furthermore, this study exemplifies the incorporation of the optimized NI Builder inspection environment to the pre-inspection and post-inspection subsystems.

  • PDF

The Camera Tracking of Real-Time Moving Object on UAV Using the Color Information (컬러 정보를 이용한 무인항공기에서 실시간 이동 객체의 카메라 추적)

  • Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.16-22
    • /
    • 2010
  • This paper proposes the real-time moving object tracking system UAV using color information. Case of object tracking, it have studied to recognizing the moving object or moving multiple objects on the fixed camera. And it has recognized the object in the complex background environment. But, this paper implements the moving object tracking system using the pan/tilt function of the camera after the object's region extraction. To do this tracking system, firstly, it detects the moving object of RGB/HSI color model and obtains the object coordination in acquired image using the compact boundary box. Secondly, the camera origin coordination aligns to object's top&left coordination in compact boundary box. And it tracks the moving object using the pan/tilt function of camera. It is implemented by the Labview 8.6 and NI Vision Builder AI of National Instrument co. It shows the good performance of camera trace in laboratory environment.