• Title/Summary/Keyword: Viscous heating effect

Search Result 16, Processing Time 0.024 seconds

Analysis on the Drying Characteristics for the Drying Process of a Thin Film Layer of Sludge (슬러지 박막의 건조과정에 대한 건조 특성 해석)

  • Lee, Kong-Hoon;Kim, Ook-Joong
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1128-1133
    • /
    • 2008
  • Drying process in the thin film layer of sludge with the thickness less than a few millimeters has been investigated using the simple one-dimensional model. Thin film drying is usually used to dry the viscous materials like sewage sludge. The thin film layer of sludge is dried on the metallic surface through which thermal energy is supplied to the layer during drying. In order to solve the equations, the mass transfer rate on the drying surface should be determined. The mass flux of evaporated water vapor on the surface is estimated with the formulation given in the literature. The effect of heating temperature, film thickness, and air velocity on drying has been examined to figure out the drying characteristics of the sludge layer.

  • PDF

Numerical Analysis of Hypersonic Flow over Small Radius Blunt Bodies (작은 크기의 무딘 물체에 대한 극초음속 유동의 수치해석)

  • Lee Chang Ho;Park Seung O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.109-114
    • /
    • 2002
  • The effect of nose radius on aerodynamic heating are investigated by using the Wavier-Stokes code extended to thermochemical nonequilibrium airflow. A spherical blunt body, whose radius varies from 0.003048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km is considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Obtained result reveals that the flow chemistry for very small radius is nearly frozen, and therefore the contribution of heat flux due to chemical diffusion is smaller than that of translational energy. As the radius becomes larger, the portion of diffusion heat flux becomes greater than translational heat flux and approaches to a constant value.

  • PDF

Effect of Temperature on the Micro-scale Adhesion Behavior of Thermoplastic Polymer Film (열가소성 폴리머 필름의 마이크로 점착 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Heo, Jung-Chul;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.86-95
    • /
    • 2009
  • Adhesion tests were carried out in order to investigate the effect of temperature on the adhesion behavior between a PMMA film and a fused silica lens in the micro scale. For the tests, a microtribometer system was specially designed and constructed. The pull-off forces on the PMMA film were measured under atmospheric condition as the temperature of the PMMA film was increased from 300 K to 443 K and decreased to 300 K. The contact area between the PMMA film and the lens was observed during the test. The adhesion behavior was changed with the change of the PMMA surface state as the temperature increased. In glassy state below 363 K, the pull-off force did not change with the increase of temperature. In rubbery state from 383 K to 413 K, the pull-off force increased greatly as the temperature increased. In addition, the area of contact was enlarged. In viscous state above 423 K, the fingering instability was observed in the area of contact when the PMMA film contacted with the lens. It was also found that the adhesion behavior can be varied with the thermal history of the PMMA film. The residual solvent in the PMMA film could emerge to the PMMA surface due to the heating and reduced the pull-off force.

Numerical Study on the Suppression of Shock Induced Separation on a Strongly Heated Wall (강하게 가열된 벽면 위에서 충격파에 의한 경계층 박리의 제거에 관한 수치 연구)

  • LEE Doug-Bong;SHIN Joon-Cheol
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.59-72
    • /
    • 1997
  • A numerical model is constructed to simulate the interactions of oblique shock wave / turbulent boundary layer on a strongly heated wall. The heated wall temperature is two times higher than the adiabatic wall temperature and the shock wave is strong enough to induce boundary layer separation. The numerical diffusion in the finite volume method is reduced by the use of a higher order convection scheme(UMIST scheme) which is a TVD version of QUICK scheme. The turbulence model is Chen-Kim two time scale model. The comparison of the wall pressure distribution with the experimental data ensures the validity of this numerical model. The effect of strong wall heating enlarges the separation region upstream and downstream. In order to eliminate the separation, wall suction is applied at the shock foot position. The bleeding slot width is about same as the upstream boundary layer thickness and suction mass flow is 10% of the flow rate in the upstream boundary layer. The final configuration of the shock reflection pattern and the wall pressure distribution approach to the non-viscous value when wall suction is applied.

  • PDF

A ROLE OF PROTO-ACCRETION DISK: HEATING PROTO-PLANETS TO EVAPORATION

  • Chang, Heon-Young;Choi, Chul-Sung
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.181-186
    • /
    • 2002
  • We study a role of the proto-accretion disk during the formation of the planetary system, which is motivated with recent X-ray observations. There is an observational correlation of the mass of extrasolar planets with their orbital period, which also shows the minimum orbital period. This is insufficiently accounted for by the selection effect alone. Besides, most of planetary formation theories predict the lower limit of semimajor axes of the planetary orbits around 0.01 AU. While the migration theory involving the accretion disk is the most favorable theory, it causes too fast migration and requires the braking mechanism to halt the planet~0.01 AU. The induced gap in the accretion disk due to the planet and/or the truncated disk are desperately required to stop the planet. We explore the planetary evaporation in the accretion disk as another possible scenario to explain the observational lack of massive close-in planets. We calculate the location where the planet is evaporated when the mass and the radius of the planet are given, and find that the evaporation location is approximately proportional to the mass of the planet as ${m_p}^{-1.3}$ and the radius of the planet as ${r_p}^{1.3}$. Therefore, we conclude that even the standard cool accretion disk becomes marginally hot to make the small planet evaporate at~0.01 AU. We discuss other auxiliary mechanisms which may provide the accretion disk with extra heats other than the viscous friction, which may consequently make a larger planet evaporate.

Effect of Native and Acetylated Sweet Potato Starch on Rheological Properties of Composite Surimi Sol

  • Kim, Bae-Young;Kim, Won-Woo;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.245-248
    • /
    • 2008
  • The effects of native sweet potato starch (NSPS) and sweet potato starch modified by acetylation (MSPS) on dynamic rheological properties of surimi sols were investigated by small-deformation oscillatory measurements. Dynamic frequency sweeps of surimi sols at $10^{\circ}C$ showed that the addition of NSPS and MSPS resulted in a reduction of storage modulus (G') and loss modulus (G"). The tan $\delta$ values (ratio of G"/ G') of all samples were in the range of $0.15{\sim}0.54$ over a wide range of frequency, indicating that all surimi sols are more elastic than viscous. The characteristic G' thermograms of surimi sols during heating from 10 to $90^{\circ}C$ were influenced by the addition of starch. The tan $\delta$ values of all samples were maintained nearly constant above $45^{\circ}C$, showing that the G' is proportional to the G" irrespective of starch effects.