• Title/Summary/Keyword: Viscous Torque

검색결과 48건 처리시간 0.022초

영구자석을 이용한 밸브모드 MR 감쇠기 설계에 관한 연구 (A Study on the Design of Valve Mode MR Damper using Permanent Magnet)

  • 김정훈;오준호
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.69-76
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectiories.

  • PDF

워터제트 추진시스템의 유동 및 성능 해석 (Flow and Performance Analysis of Waterjet Propulsion System)

  • 박원규;장진호;전호환;김문찬
    • 대한조선학회논문집
    • /
    • 제41권6호
    • /
    • pp.8-14
    • /
    • 2004
  • The numerical analysis of a waterjet propulsion system was performed to provide detail understanding of complicated flow phenomena including interactions of intake duct, rotor, stator, and contracted discharge nozzle. The incompressible RANS equations were solved on moving multiblocked grid system. To handle interface boundary between rotor and stator, the sliding multiblock method was applied. The numerical results were compared with experiments and good agreement was obtained. The complicated viscous flow features of the waterjet, such as secondary flow inside the intake duct, the recovery of axial flow by the role of the stator, and tip and hub vortex, etc. were well analyzed by the present simulation. The performance of thrust and torque was also predicted.

무베어링 로터 허브의 공기역학적 항력 예측 (Aerodynamic Drag Prediction of a Bearingless Rotor Hub)

  • 강희정
    • 한국항공우주학회지
    • /
    • 제40권8호
    • /
    • pp.655-661
    • /
    • 2012
  • 본 연구에서는 비정렬 중첩 혼합 격자계를 사용하는 전산유체기법으로 무베어링 로터허브의 공기역학적 항력을 계산하였다. 동체와 로터 허브 모두 점성 항력보다는 압력 항력이 주요 요소로 작용하고 있으며, 토크 튜브의 항력이 허브 항력에서 가장 큰 비중을 차지하고 있음을 확인할 수 있었다. 허브 항력은 동체 항력 대비 39~41%를 차지하는 것으로 나타났다. 최종적으로 개발된 헬리콥터의 항력 추세와의 비교를 통해, 설계된 무베어링 로터 허브의 항력은 요구도를 충족시키는 것으로 확인되었다.

슬라이딩 모드제어에 의한 교류 서보 전동기의 위치제어에 관한 연구 (Position Control for AC Servo Motor Using a Sliding Mode Control)

  • 홍정표;홍순일
    • 융합신호처리학회논문지
    • /
    • 제5권3호
    • /
    • pp.210-215
    • /
    • 2004
  • 교류 서보전동기 동적 모델은 비선형이고 2차 저항이 변동영향이 많다. 이러한 복잡한 제어는 견실제어가 요구된다. 이러한 시스템의 동특성은 슬라이딩 모드제어를 사용함으로 파라미터나 외란 변동에 대하여 견실성을 달성할 수 있다. 본 논문은 교류 서보전동기에 의한 위치제어에 슬라이딩 모드 제어의 적용을 나타내었다. 제어방법이 유도되고 제어시스템이 설계되었다. 교류 서보전동기의 견실제어를 위해 외부 부하 파라미터에 기초한 설계방법이 제안되었다. 제안된 제어방법은 가변구조 제어기와 슬립주파수형 벡터제어에 기초하여 주어졌다. 시뮬레이션 결과는 관성모우먼트, 점성마찰 및 부하외란 변동에 결실함을 나타내었고 슬라이딩 모드를 적용한 제안된 설계방법이 유용한 것을 구명한다.

  • PDF

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF

대향류 반응 및 비반응 유동장에서의 단일 와동의 동적 거동 (Dynamic Behaviors of a Single Vortex in Counter Non-reacting and Reacting Flow Field)

  • 유병훈;오창보;황철홍;이창언
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1262-1272
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the dynamic behaviors of a single vortex in counter reacting and non-reacting flow field. A predictor-corrector-type numerical scheme with a low Mach number approximation is used in this simulation. A 16-step augmented reduced mechanism is adopted to treat the chemical reaction. The budget of the vorticity transport equation is examined to reveal a mechanism leading to the formation, destruction and transport of a single vortex according to the direction of vortex generation in reacting and non-reacting flows. The results show that air-side vortex has more larger strength than that of fuel-side vortex in both non-reacting and reacting flows. In reacting flow, the vortex is more dissipated than that in non-reacting flow as the vortex approach the flame. The total circulation in reacting flow, however, is larger than that in non-reacting flow because the convection transport of vorticity becomes much large by the increased velocity near the flame region. It is also found that the stretching and the convection terms mainly generate vorticity in non-reacting and reacting flows. The baroclinic torque term generates vorticity, while the viscous and the volumetric expansion terms attenuate vorticity in reacting flow. Furthermore, the contribution of volumetric expansion term on total circulation for air-side vortex is much larger than that of fuel-side vortex. It is also estimated that the difference of total circulation near stagnation plane according to the direction of vortex generation mainly attributes to the convection term.

고농축 복합화약 시뮬란트: Exact/Dechlorane 현탁계의 유변물성 (Highly Concentrated Polymer Bonded Explosive Simulant: Rheology of Exact/Dechlorane Suspension)

  • 이상묵;홍인권;이재욱;이근득
    • 폴리머
    • /
    • 제38권3호
    • /
    • pp.286-292
    • /
    • 2014
  • 에너지 고분자인 poly(BAMO-AMMO)와 유사한 특성을 갖는 폴리에틸렌 플라스토머인 Exact를 고분자 결합제로, RDX(research department explosive)와 유사한 특성을 갖는 dechlorane을 충전제로 사용한 고농축 복합화약 시뮬란트 현탁계의 유변물성을 연구하였다. 회분식 용융혼련기를 사용하여 현탁계의 혼화거동을 조사하였는데 상당한 점성소산열이 발생하였다. 충전율이 70 v% 이상에서는 토크의 지속적인 감소가 있었는데 이는 벽면 미끌어짐 현상에 기인한다고 사료되었다. SEM 관찰 결과 충전제 입자들은 잘 분산되어 있었고 혼화 조건의 영향은 크지 않은 것으로 판단되었다. 현탁계의 뚜렷한 전단박화(shear thinning) 특성으로 인하여 낮은 전단속도의 평판-평판 레오미터에서 측정이 어려운 고충전 현탁계도 높은 전단속도의 모세관 레오미터에서 유변물성 측정이 가능하였다.

이산요소법-다물체동역학 연성해석 모델을 활용한 로타리 경운작업 시 표면 에너지에 따른 PTO 소요동력 예측 (Prediction of PTO Power Requirements according to Surface energy during Rotary Tillage using DEM-MBD Coupling Model)

  • 배보민;정대위;안장현;최세오;이상현;성시원;김연수;김용주
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권2호
    • /
    • pp.44-52
    • /
    • 2024
  • In this study, we predicted PTO power requirements based on torque predicted by the discrete element method and the multi-body dynamics coupling method. Six different scenarios were simulated to predict PTO power requirements in different soil conditions. The first scenario was a tillage operation on cohesionless soil, and the field was modeled using the Hertz-Mindlin contact model. In the second through sixth scenarios, tillage operations were performed on viscous soils, and the field was represented by the Hertz-Mindlin + JKR model for cohesion. To check the influence of surface energy, a parameter to reproduce cohesion, on the power requirement, a simple regression analysis was performed. The significance and appropriateness of the regression model were checked and found to be acceptable. The study findings are expected to be used in design optimization studies of agricultural machinery by predicting power requirements using the discrete element method and the multi-body dynamics coupling method and analyzing the effect of soil cohesion on the power requirement.