• Title/Summary/Keyword: Viscosity equation

Search Result 392, Processing Time 0.025 seconds

Propagation Characteristics of Pressure Pulse of Unsteady Flow in n Hydraulic Pipeline (유압관로에서 비정상유동의 압력전파특성)

  • Yu, Yeong-Tae;Na, Gi-Dae;Kim, Ji-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • Flow of fluid has been studied in various fields of fluid engineering. To hydraulic engineers, the unsteady flow such as pulsation and liquid hammering in pipes has been considered as a serious trouble. So we are supposed to approach the formalized mathematical model by using more exact momentum equation for fluid transmission lines. Most of recent studies fur pipe line have been studied without considerations of variation of viscosity and temperature, which are the main factors of pressure loss causing the friction of fluid inside pipe line. Frequency response experiments are carried out with use of a rotary sinusoidal flow generator to investigate wave equation take into account viscosity and temperature. But we observed that measured value of gains are reduced as temperature increased. And it was respectively observed that the measured value of gains are reduced and line width of gain is broadened out, when temperature was high in the same condition. As we confessed, pressure loss and phase delay are closely related with the length, diameter and temperature of pipe line. In addition, they are the most important factors, when we decide the momentum energy of working fluid.

Levee Breach Flow by Experiment and Numerical Simulation (수리실험 및 수치모의를 이용한 제방붕괴 흐름해석)

  • Kim, Joo-Young;Lee, Jong-Kyu;Lee, Jin-Woo;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.461-470
    • /
    • 2011
  • Abrupt and gradual levee breach analyses on the flat domain were implemented by laboratory experiments and numerical simulations. To avoid the reflective wave from the side wall the experiment was performed in a large domain surrounded by waterway. A numerical model was developed for solving the two-dimensional gradual levee breach flow. The results of the numerical simulation developed in this study showed good agreement with those of the experimental data. However, even if the numerical schemes effectively replicated the trends of the observed water depth for the first shock, there were little differences for the second shock. In addition, even though the model considered the Smagorinsky horizontal eddy viscosity, the location and height of the hydraulic jump in the numerical simulation were not fairly well agree with experimental measurements. This shows the shallow water equation solver has a limitation which does not exactly reproduce the energy dissipation from the hydraulic jump. Further study might be required, considering the energy dissipation due to the hydraulic jump or transition flow from reflective wave.

A New Flow Equation for Thixotropic Systems

  • Sohn, Dae-Won;Kim, Eung-Ryul;Hahn, Sang-Joon;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.257-262
    • /
    • 1986
  • Thixotropy is a time-dependent shear-thinning phenomenon. We derived a new thixotropic formula which is based on the generalized viscosity formula of Ree and Eyring, $f={\Sigma}\frac{X_i}{{\alpha}_i}sinh^{-1}$ () (Refer to the text concerning the notation.) The following is postulated: (1) thixotropy occurs when small flow units attached to a large flow unit separate from the latter under stress (2) elastic energy(${\omega}$) is stored on the large flow unit during the flow process, and (3) the stored energy contributes to decrease the activation energy for flow. A new thixotropic formula was derived by using these postulations, $f={\frac}{X_0{\beta}_0}{\alpha_0}{\dot{s}}+{\frac}{X_1{\beta}_1}{{\alpha}_1}{\dot{s}}+{\frac}{X_2}{{\alpha_x}}sinh^{-1}$[$({\beta}_0)_2$ exp $(-C_2{\dot{s}}^2/RT){\cdot}{\dot{s}}$] f is the shear stress, and s is the rate of shear. In case of concentrated solutions where the Newtonian flow units have little contribution to the viscosity of the system, the above equation becomes, $f=\frac{X_2}{\alpha_2}sinh^{-1}$[$({\beta}_0)_2$ exp $(-C_2{\dot{s}}^2/RT){\cdot}{\dot{s}}$]. In order to confirm these formulas, we applied to TiO2(anatase and rutile)-water, printing ink and mayonnaise systems. Good agreements between the experiment and theory were observed.

Rheological Properties of Gelatinized Dilute Rice Starch Solutions (쌀전분 희석 호화액의 유동학적 특성)

  • Kim, Young-Sug;Kim, Ju-Bong;Lee, Shin-Young;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 1984
  • Rheological properties of waxy and non-waxy rice starch solutions were evaluated with a narrow gap rotational and Cannon Fenske viscometers. The gelatinized rice starch solutions containing 0.2-1.0% starch displayed pseudoplastic flow behavior. At higher starch level, degree of pseudoplasticity of waxy rice starch solutions increased, while that of non-waxy rice did not changed apparently. The consistency coefficient (K) of non-waxy rice starch solutions increased with increasing gelatinization temperature, but waxy rice starch solutions remained constant, and in alkaline aqueous solutions both of them showed increasing K values. The value of K increased exponentially with an increase in concentration. The effect of the temperature on the viscosity of the solutions followed Arrhenius' type equation, and the activation energies were in the range of 3.675-3.775 kcal/g-mol that were near to that of pure water. The changes of reduced viscosity with concentration were followed Huggin's equation and the values of intrinsic viscosity and interaction coefficient were 0.78-1.59 dl/g and 0.67-2.75, respectively.

  • PDF

Studies on the Mucilage of the Root of Abelmoschus manihot, MEDIC -[Part V] Kinetics of initial viscosity- (황촉규근(黃蜀葵根) 점액(粘液)에 관한 연구(硏究) -[제오보(第五報)] 초기점도변화(初期粘度變化)의 동역학적고찰(動力學的考察)-)

  • On, Doo-Heayn;Im, Zei-Bin;Sohn, Joo-Hwan
    • Applied Biological Chemistry
    • /
    • v.22 no.1
    • /
    • pp.42-50
    • /
    • 1979
  • The viscosity coefficient of mucilage of Abelmoschus manihot, MEDIC root decrease under the influence of temperature and the other various physical and chemical factors. The rate of viscosity change of the mucilage have been measured at $5^{\circ}{\sim}50^{\circ}C$ in aqueous state under the various conditions. The results are as follows: 1. Relationship between rate of viscosity change of mucilage and temperature can be represent as Andrade equation. 2. Their activation energies of viscosity change of Abelmaschus maihot, MEDIC root A, B, C, D, E, F and G observed are 11.9, 12.1, 11.4, 12.1, 11.6, 13.8 and 13.2 Kcal/mole, respectively. And other activation parameters arc evaluated. 3. The activation energy of naturally mucilage are smaller than that of sterilized mucilage.

  • PDF

Studies on the Viscometric Behavior of Mayonnaise (마요네즈의 점성(粘性)에 관(關)한 연구(硏究))

  • Lee, Yung-Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.2
    • /
    • pp.119-127
    • /
    • 1986
  • The rheological properties of mayonnaise were studied with cylindrindrical viscometer. It was observed that mayonnaise showed pseudoplastic behavior, yield stress and time dependent characteristics. In the initial period of shear time, the decay of viscosity of mayonnaise was followed by a second-order kinetic equation. The influence of temperature on viscosity could be described by Arrhenius equation. The apparent viscosity of mayonnaise markedly increased with an rise in the concentration of egg yolk; and the emulsion was most stable at the concentration of 12%. At the concentration of $65{\sim}75%$ oil, the apparent viscosity was increased; the maximum value was reached at 75% oil, and above 75% oil, the remarkable decreased was observed. The size of oil drops was decreased with an increase in oil concentration of 75% oil. The apparent viscosity of mayonnaise was increased with an rise in water contents, while being decreased with one in the concentration of vinegar.

  • PDF

Sensitivity Analysis for the Navier-Stokes Equations with Two-Equation Turbulence Models

  • 김창성;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.66-72
    • /
    • 2000
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. Both the direct differentiation code and the adjoint variable code adopt the same time integration scheme with the flow solver to efficiently solve the differentiated equations. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. Using two-equation turbulence models, it is observed that a usual assumption of constant turbulent eddy viscosity in adjoint methods may lead to seriously inaccurate results in highly turbulent flows.

  • PDF

COMPARISON OF COUPLING METHODS FOR NAVIER-STOKES EQUATIONS AND TURBULENCE MODEL EQUATIONS (Navier-Stokes 방정식과 난류모델 방정식의 연계방법 비교)

  • Lee, Seung-Soo;Ryu, Se-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.111-116
    • /
    • 2005
  • Two coupling methods for the Navier-Stokes equations and a two-equation turbulence model equations are compared. They are the strongly coupled method and the loosely coupled method. The strongly coupled method solves the Navier-Stokes equations and the two-equation turbulence model equations simultaneously, while the loosely coupled method solves the Navier-Stokes equation with the turbulence viscosity fixed and subsequently solves the turbulence model equations with all the flow quantities fixed. In this paper, performances of two coupling methods are compared for two and three-dimensional problems.

  • PDF

Thermohydrodynamic Lubrication Analysis of Journal Bearing on Steam Turbine Shipping Engine Involving the Mixture of Water within Turbine Oil (터빈오일과 물이 혼합될 때 증기터빈 선박엔진 저어널 베어링의 열유체윤활 해석)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.77-87
    • /
    • 2011
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within turbine oil on the performance of high speed journal bearing of a steam turbine shipping engine. The governing equation is the general equation being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a steam turbine shipping engine lubricated with the mixture of two Newtonian fluid, for example, water within turbine oil. The results related with the bearing performance are showed.

Sensorless Speed Control of IPMSM using an Adaptive Sliding mode Observer (적응 슬라이딩 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어)

  • Kang, Hyung-Seok;Kim, Won-Seok;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.271-279
    • /
    • 2006
  • In this paper, a new speed sensorless control based on an adaptive sliding mode observer is proposed lot the interior permanent magnet synchronous motor(IPMSM) drives. With using voltage equation only, the adaptive sliding mode observer was investigated. Since the parameter of the dynamic equation such as machine inertia or viscosity friction coefficient are not well known and these values can be easily changed during normal operation, there are many restrictions in the actual implementation. The proposed adaptive sliding mode observer applied to overcome the problem caused by using the dynamic equation. Furthermore, the Lyapunov function is used to prove the system stability included speed estimate and speed control. The effectiveness of the proposed algorithm is confirmed by the experiments.