• Title/Summary/Keyword: Viscosity Force

Search Result 262, Processing Time 0.023 seconds

Internal Flow Analysis of a Fuel Pressurized Blower for Fuel Cell System (연료전지용 연료승압 블로어 내부유동장 평가)

  • Choi, Ka-Ram;Jang, Choon-Man
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.29-35
    • /
    • 2011
  • This paper describes an internal flow characteristics of a fuel pressurized blower, used for 1kW domestic fuel cell system. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is introduced. SST model with scalable wall function is employed to estimate the eddy viscosity. Moving mesh system is applied to the numerical analysis for describing the volume change of a diaphragm cavity in time. Throughout numerical simulation with the modeling of the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Force variations on the lower plate of a diaphragm cavity are evaluated in time. It is found that the driving force at the suction stage of a diaphragm cavity is more necessary than that at the discharging stage.

무진동 조이스틱을 이용한 전동 휠체어 제어에 관한 연구

  • 홍준표;권오상;이응혁;김병수;홍승홍
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.145-149
    • /
    • 1997
  • General joystick using spring only has a vibration when operaor drops the joystick. If it is used as input of motorized wheelchair, its system have a serious problem which operator fall into dangerous situation. Therefore, In this paper proposed non-vibration joustick which control a motorized wheelchair. Non-vibration joystick was designed which return to origin point when operator drops joystick by mistake. Reflected force of non- vibration joystick is defined as addition displacement and variation rate. And each parameter has elasticity of spring and viscosity of DC servo motor. Through simulation for virtual environment, we found two coefficient to return origin point smoothly when a disabled person drops the joystick. In case of larger elastic coefficient of spring than viscous coefficient, we confirmed the result has the equal vibration of general joystick (under-damping). In opposite case, joystick returned to origin point with excessive force. As a application of non-vibration joystick, we experimented wall-following controlling. In this trial, we corroborated that joystick follows smoothly around the corridors.

  • PDF

Applied physics in relation to Denture Impression Making (의치인상채득(義齒印象採得)에 관련(關聯)되는 응용물리학(應用物理學))

  • Kim, Yeong-Su
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.79-83
    • /
    • 1969
  • 1) 가능(可能)한한 조직(組織)이 변형(變形)되지 않아야 한다. 2) Atmospheric pressure를 이용(利用)하기 위(爲)하여 peripheral border 에 있어서의 조직변형(組織變形)이 필요(必要)한 경과(境過)는 그 정도(程度)가 eiastic force가 retentive force 보다 크지 않도록 최소한(最小限)으로 해야 한다. 3) Denture base와 조직(組織)의 원형간(原形間)에는 접촉(接觸)이 밀접(密接)해야 한다. 그래야 saliva의 film 균일(均一)하고 얇게 될 수 있다. 4) Atmospheric pressure는 denture의 retention과 중요(重要)한 연관성이 있으므로 physiologic seal area를 형성(形成)해 주는 것이 유리(有利)하다. 5) Ridge의 형태(形態)도 denture의 retention 대(對)한 하나의 중요(重要)한 인자(因子)이다. 6) Denture에 의(依)해서 피개(被蓋)되는 면적(面積)은 retention에 관계(關係)되는 한 인자(因子)로써 피개면적(被蓋面積)이 클수록 유지력(維持力)이 커진다. 7) Saliva의 viscosity도 retention의 한 인자(因子)가 된다. 8) Friction은 retention의 한 인자(因子)가 될수는 있으나 병인적(病因的)인 증상(症狀)을 유발(誘發)할수 있으므로 이용(利用)해서는 않된다.

  • PDF

Numerical study of three-dimensional flow through turbine flow meter (터빈유량계의 3차원 유동에 관한 수치적 연구)

  • Kim, J. B.;Park, K. A.;Ko, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.247-252
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel Line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. The standard k-$\epsilon$ model is employed to evaluate turbulent viscosity.

  • PDF

Numerical Analysis of Turbulent Flow Through Turbine Flow Meter (터빈유량계의 난류유동에 대한 수치해석)

  • Kim, J.B.;Park, K.A.;Ko, S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.573-578
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and tile Coriolis force are added to the equation of motion. The standard $k-{\varepsilon}$ model is employed to evaluate turbulent viscosity. At first the stability and accuracy of the program is verified with the flow through a square duct with a $90^{\circ}$ bend and on the flat plate.

  • PDF

Stability Analysis of Railway Vehicle Featuring MR Damper (MR 댐퍼를 적용한 철도차량의 안정성 해석)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Yoo, Won-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.957-962
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological (MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect. Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

  • PDF

Stability Analysis of Railway Vehicle Featuring MR Damper (MR댐퍼를 적용한 철도차량의 안정성 해석)

  • Ha, Sung-Hoon;Choi, Seung-Bok;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.732-740
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological(MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

CFD Analysis on Shoe and Swash-Plate of Axial Piston Pump (사판식 유압펌프의 피스톤 슈 간극의 유동해석)

  • Kim, In-Soo;Lee, Kyong-Hoon;Bae, Jae-Man
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.156-158
    • /
    • 2008
  • Along the various gap distance between shoe and swash plate and pocket diameter, lifting force of piston shoe during the compressing stage was calculated. The flow in piston, orifice, shoe, and back space was considered to be 2-dimension axisymmetric and analysed by Fluent, a commercial CFD Software. The wall boundary condition was given as nonslip and adiabatic, while the change in fluid viscosity was considered as linear along temperature. Calculated lifting force and oil leakage of shoe was used in the design of a pump to confirm the shape of the shoe.

  • PDF

Vibration Control of a Vehicle using ER Damper (ER댐퍼를 이용한 차량의 진동제어)

  • Joo, Dong-Woo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.104-111
    • /
    • 1999
  • A semi-active suspension system for a vehicle using an Electrorheological Fluid damper has been studied. Apparent viscosity of ERF(Electrorheological Fluid) can be changed rapidly by applying electric field. The damping force of ER damper can be selectively controlled by employing electric field to the ER fluid domain. This paper deals with a two-degree-of-freedom suspension using the ER damper for a quarter car model. An intelligent control method using fuzzy control with genetic algorithm has been employed to control the damping force of the ER damper. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. The designed fuzzy net controller has been compared with the skyhook type controller for a quarter car model. The computer simulation results show that the semi-active suspension with ER damper has a good performance in the sense of ride quality with less vibration for ground vehicle.

  • PDF

Study on the Improved Measurement of Piston Assembly Friction Force in an IDI Diesel Engine (간접 분사식 디젤기관 피스톤 결합체 마찰력 측정 장치의 개선 및 마찰력 측정)

  • Cho, S.W.;Kim, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.77-85
    • /
    • 1995
  • Among mechanical friction losses in an engine, the piston assembly and cylinder components accounts for the majority of the losses. The movable bore technique has been developed and turned out to be the most reliable technique in measuring the instantaneous friction of piston assembly. The weakness of this system, however, was the presence of the protruded top of movable bore necessary for pressure balancing. Because of the protruded part the piston could not be taken out without disassembling the crankshaft. Present study was carried out with a system of removable top of the movable bore so that it was possible to make frequent piston removals. The effects from engine speed, oil viscosity, engine load and elastic contact pressure of piston rings on the frictional characteristics have been evaluated with the improved equipment. Also, frictions of each member of piston assembly were measured.

  • PDF