• Title/Summary/Keyword: Viscoelastic behaviors

Search Result 58, Processing Time 0.047 seconds

Combination resonances of imperfect SSFG cylindrical shells rested on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.87-100
    • /
    • 2020
  • The present paper investigates the combination resonance behavior of imperfect spiral stiffened functionally graded (SSFG) cylindrical shells with internal and external functionally graded stiffeners under two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation, which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness, to account for the vibration hardening/softening phenomena and damping considerations. With regard to classical plate theory of shells, von-Kármán equation and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The combination resonance is obtained by using the multiple scales method. Finally, the influences of the stiffeners angles, foundation type, the nonlinear elastic foundation coefficients, material distribution, and excitation amplitude on the system resonances are investigated comprehensively.

Viscoelastic Bending Behaviors of Unidirectional Fiber Reinforced Composite C-rings with Asymmetric Material Properties (비대칭물성을 고려한 일축방향 섬유강화 복합재료 C링의 점탄성적 거동해석)

  • 이명규;이창주;박종현;정관수;김준경;강태진
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.18-30
    • /
    • 2000
  • In order to optimize the design of unidirectional fiber reinforced composite C-rings, a viscoelastic load relaxation behavior was analyzed under a point load. Initially, the deflection and bending stiffness were calculated based on the elastic beam theory and the viscoelastic relaxation and creep behaviors were derived from the elastic solution using the correspondence theorem. Besides the orthotropic mechanical properties of the composite, asymmetric mechanical property due to the different tensile and compressive properties were also considered. Except the deviation affected by the relatively large thickness of the specimen compared to the radius, the calculated relaxation showed good agreement with the experimental result.

  • PDF

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

Curing Behaviors and Viscoelastic of UPE Resins with Different Glycol Molar Ratios (글리콜 몰비가 다른 불포화 폴리에스테르 수지의 경화거동 및 점탄성)

  • Lee, Sang-Hyo;Park, Yung-Hoon;An, Seung-Kook;Lee, Jang-Oo
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2001
  • In this study, the effects of different glycol molar ratios of unsaturated polyester(UPE) resins on the curing behaviors were investigated. The cross linking process was checked or monitored by differential scanning calorimetry(DSC) and by viscoelastic properties of rigid-body pendulum model. The knife-edge from which the pendulum is suspended, is immersed in a reaction mixture, and the change of the viscoelastic behavior brings on those of the period(T) and logarithmic decrement(${\Delta}$) of the damped free oscillations of the pendulum. The values of T and ${\Delta}$ obtained are related to the dynamic modulus(E') and modulus loss(E'). The information on the viscoelastic behavior of unsaturated polyester(UPE) resins during the curing process are shown to illustrate the usefulness of the techniques. As the content of NPG in a propylene glycol(PG)/NPG glycol mixture increased, both the cycle time during cure and the change of damping during cure of UPE resin decreased.

  • PDF

Adhesion Performance and Curing Behaviors of Acid-free Acrylic PSAs Using Two Types of Curing Agents (Acid-free 아크릴계 점착제의 접착 물성 및 경화거동 연구)

  • Lee, Seung-Woo;Park, Ji-Won;Kwon, Young-Eun;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.12 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Acrylic pressure-sensitive adhesives are used in many different parts in the world. But acrylic acid in PSAs may occur unexpected results such as corroding adherends or producing by-products when applied within electronic devices. This study employed acrylic PSAs based on 2-ethylhexyl acrylate (2-EHA), 2-hydroxyethyl acrylate (2-HEA) and butyl acrylate (BA) with different coating thickness. There are two types of curing agents. One is methylaziridine derivative (MAZ) and the other is aluminum acetylacetonate (AlACA). This study examined the adhesion performance and curing behaviors using peel strength, probe tack and gel fraction. Also, the viscoelastic properties of acrylic PSAs were investigated from Advanced rheometric expansion system (ARES).

Computer Simulation of Die Extrusion for Rubber Compound Using Simplified Viscoelastic Model (간략화된 점탄성 모델을 적용한 고무 컴파운드의 압출 해석)

  • Kim, J. H.;Hong, J. S.;Choi, S. H.;Kim, H. J.;Lyu, M. Y.
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • One of the viscoelastic flow behaviors during profile extrusion is the swelling of extrudate. In this study, die swell of rubber compound in the capillary die have been investigated through experiment and computer simulation. Simplified viscoelastic model and non-linear differential viscoelastic model such as PTT model have been used in the computer simulation. The simulation results have been compared with experimental data. Experiment and simulation have been performed using fluidity tester and commercial CFD code, Polyflow respectively. Die swells predicted by two models showed good agreement with experimental results. Pressure and velocity distribution, and circulation flow at the corner of reservoir have been well predicted by PTT model. Simplified viscoelastic model can not predict circulation flow at the corner of reservoir. However this model has an advantage in computation time compare with full viscoelastic model, PTT model.

Computer Simulation of Viscoelastic Flow in a Capillary Die for Rubber Compounds (모세관 다이에서 고무 복합체의 점탄성 거동에 대한 컴퓨터 모사)

  • Park, Dong-Myung;Kim, Hok-Joo;Yoon, Jae-Ryong;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.223-230
    • /
    • 2006
  • Rubber compounds have a high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate, and the amount of swelling varies with operational conditions in extrusion. It is well recognized that the elastic portion in the viscoelastic property plays an important role in the extrudate swell. In this study computer simulation of the die swell at the capillary die for several rubber compounds has been performed using commercial CFD code, Polyflow. A non-linear differential viscoelastic model, Phan-Thien-Tanner (PTT) model, was used in the computer simulation. Non-isothermal behavior was considered in the calculation. Distribution of pressure, velocity and temperature in the reservoir and capillary die, and extrudate profiles were predicted through the simulation. The amount of the die swell fur the different rubber compounds was investigated for various flow rates and three types of length to diameter of the capillary die. It is concluded that the PTT model successfully represented viscoelastic behavior of rubber compounds.

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.

Three dimensional dynamic response of functionally graded nanoplates under a moving load

  • Hosseini-Hashemi, Shahrokh;Khaniki, Hossein Bakhshi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.249-262
    • /
    • 2018
  • In this paper, reaction of functionally graded (FG) thick nanoplates resting on a viscoelastic foundation to a moving nanoparticle/load is investigated. Nanoplate is assumed to be thick by using second order shear deformation theory and small-scale effects are taken into account in the framework of Eringen's nonlocal theory. Material properties are varied through the thickness using FG models by having power-law, sigmoid and exponential functions for material changes. FG nanoplate is assumed to be on a viscoelastic medium which is modeled using Kelvin-Voight viscoelastic model. Galerkin, state space and fourth-order Runge-Kutta methods are employed to solve the governing equations. A comprehensive parametric study is presetned to show the influence of different parameters on mechanical behavior of the system. It is shown that material variation in conjunction with nonlocal term have a significant effect on the dynamic deformation of nanoplate which could be used in comprehending and designing more efficient nanostructures. Moreover, it is shown that having a viscoelastic medium could play an important role in decreasing these dynamic deformations. With respect to the fresh studies on moving atoms, molecules, cells, nanocars, nanotrims and point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors by showing the influence of the moving path, velocity etc. on dynamic reaction of the plate.

Nonlinear vibration of SSMFG cylindrical shells with internal resonances resting on the nonlinear viscoelastic foundation

  • Kamran, Foroutan;Habib, Ahmadi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.767-782
    • /
    • 2022
  • In this paper, the nonlinear vibration behavior of the spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells exposed to the thermal environment and a uniformly distributed harmonic loading using a semi-analytical method is investigated. The cylindrical shell is surrounded by a nonlinear viscoelastic foundation consisting of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The distribution of temperature and material constitutive of the stiffeners are continuously changed through the thickness direction. The cylindrical shell has three layers consisting of metal, FGM, and ceramic. The interior layer of the cylindrical shell is rich in metal, while the exterior layer is rich in ceramic, and the FG material is located between two layers. The nonlinear vibration problem utilizing the smeared stiffeners technique, the von Kármán equations, and the Galerkin method has been solved. The multiple scales method is utilized to examine the nonlinear vibration behavior of SSMFG cylindrical shells. The considered resonant case is 1:3:9 internal resonance and subharmonic resonance of order 1/3. The influences of different material and geometrical parameters on the vibration behavior of SSMFG cylindrical shells are examined. The results show that the angles of stiffeners, temperature, and elastic foundation parameters have a strong effect on the vibration behaviors of the SSMFG cylindrical shells.