• 제목/요약/키워드: Viscoelastic Damping

검색결과 268건 처리시간 0.021초

수동구속감쇠층을 갖는 자동차루프의 진동특성에 대향 실험적 연구 (An Experimental Study on Vibration Characteristics of Automotive Roof with Passive Constrained Layer Damping)

  • 이정균;김찬묵;강영규;사종성;홍성규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.613-617
    • /
    • 2004
  • This paper presents an experimental study on vibration characteristics of an automotive roof with viscoelastic material. The goal of the study is to extract modal parameters (natural frequency, loss factor, and mode shape) of automotive roof with unconstrained and constrained layer damping treatment. To determine the effective position of the viscoelastic patch on a roof, vibration tests have been carried out for two cases; Aluminum plate with viscoelastic patch on maximum strain energy, and aluminum plate with viscoelastic patch on nodal line. From the result of aluminum plate, it is found that the viscoelastic patch should be attached on the Place with maximum strain energy Part. For the automotive root five Patches of unconstrained or constrained viscoelastic material have been attached on the position of maximum strain energy. This paper addresses that the proper position of viscoelastic patch is very important and the concept of maximum strain energy may be a good criterion f3r the placement of viscoelastic patch.

  • PDF

점탄성 제진재를 이용한 비구속형 제진강판의 최적설계에 관한 연구 (A Study on Optimum Design of an Unconstrained Damping Steel Plate by Using Viscoelastic Damping Material)

  • 유영훈;양보석
    • 소음진동
    • /
    • 제5권4호
    • /
    • pp.493-501
    • /
    • 1995
  • Optimum design of a viscoelastic damping layer which is unconstrainedly cohered on a steel plate is discussed from the viewpoint of the modal loss factor. Themodal loss factor is analyzed by using the energy method to the base steel plate and cohered damping layer. Optimum distributions of the viscoelastic damping layer for modes are obtained by sequentially changing the position of a piece of damping layer to another position which contributes to maximizing the modal loss factors. Analytical procedure performed by using this method simulated for 3 fundamental modes of an edge-fixed plate. Simulated results indicate that the modal loss factor ratios can be increase by as much as 210%, or more, by optimizing the thickness distribution of the damping layer to two times of the initial condition which is entirely covered. Optimum configurations for the modes are revealed by positions where added damping treatments become most effective. The calculated results by this method are validated by comparison with the experimental results and the calculated results obtained by the Ross-Ungar-Kerwin's model in the case of the layer is uniformly treated over the steel plate.

  • PDF

실물크기 점탄성 감쇠기의 동적 특성 (Dynamic Characteristics of Full-Scale Viscoelastic Dampers)

  • 민경원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.367-374
    • /
    • 1999
  • this paper focuses on the dynamic characteristics of full-scale viscoelastic dampers through the experimental study. Viscoelastic dampers which dissipate the response energy of a building under earthquake excitation make a role of increasing damping capacity of the building. Therefore it is important to recognize the damping behavior of viscoelastic dampers. Full-scale viscoelastic dampers are made of three types of rubbers for experimental test. The hysteretic behavior is obtained through the load-deformation experiment over the various loading frequencies and damper strains The experimental results show the good performance of viscoelastic dampers under earthquake excitations,

  • PDF

점탄성 댐퍼의 비선형 특성을 고려한 건물의 지진응답해석 (Seismic response Analysis of Building Structures considering the Nonlinear Property of Viscoelastic Dampers)

  • 최현;김두훈;민경원;이상조
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.228-235
    • /
    • 1999
  • As a seismic damper the viscoelastic damper is known the effective method to control the drift of the flexible building. As the viscoelastic damper has the characteristics of both damping and stiffness specially when the rubber material used hysteretic damping. The behavior of the hysteretic damping is quite different from that of the viscous damping. For the evaluation of the viscoelastic damper for the seismic purpose the nonlinear response spectrum was generated based on the dynamic test of the viscoelastic damper and the results is compared to that of the typical linear response spectrum,

  • PDF

중진 지역에서의 점탄성 감쇠기설계 및 제진 성능 실험 (Seismic Design and Test of Viscoelastic Dampers in regions of Moderate Seismicity)

  • 민경원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.359-366
    • /
    • 1999
  • This paper is a study on the seismic design and test of viscoelastic dampers in regions of moderate seismicity. First moderate seismic waves are generated with measured strong seismic data based on the theory of effective peak acceleration. Then their response spectrums are compared each other to estimate the required damping to attenuate the vibration. As relatively smaller damping is required in the regions of moderate seismicity than in the regions of strong seismicity proper viscoelastic dampers can be designed according to the estimated damping. Finally a test building model is designed and the viscoelastic dampers are installed for the experimental study under moderate and strong earthquakes, It is found that viscoelastic dampers with low damping capacity developed in this study are enough to reduce the building response in regions of moderate seismicity.

  • PDF

보 전달함수법을 이용한 제진재의 점탄성 특성 측정 (Measurement of Viscoelastic Properties of Damping Materials using Beam Transfer Function Method)

  • 김승준;이제필;박준홍;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.286-289
    • /
    • 2008
  • Damping materials are widely used to reduce vibration or noise generation of structures. To understand their damping capability and for use in numerical simulations, their viscoelastic properties should be measured in the frequency range of interest. In this study, experimental setup is proposed to measure materials properties of very compliant polymer materials. The polymer materials used in this study are difficult to form into rod shapes, and typical resonance methods are not applicable. In the proposed measurement setup, the damping materials were modeled as a simple viscoelastic support at one end of the beam. Their properties were measured through analysis of their effects on the wave propagation characteristics of the beam structure.

  • PDF

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

능동 구속감쇠층을 이용한 아크형태 셸 모델에 대한 진동특성 연구 (Vibration Characteristic Study of Arc Type Shell Using Active Constrained Layer Damping)

  • 고성현;박현철;황운봉;박철휴
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.193-200
    • /
    • 2004
  • The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).

점탄성 물질의 온도와 주파수 의존성을 고려한 구속형 제진보의 최대 손실계수 설계 (Optimal Layout Design of Frequency- and Temperature-dependent Viscoelastic Materials for Maximum Loss Factor of Constrained-Layer Damping Beam)

  • 이두호
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.185-191
    • /
    • 2008
  • Optimal damping layout of the constrained viscoelastic damping layer on beam is identified with temperatures by using a gradient-based numerical search algorithm. An optimal design problem is defined in order to determine the constrained damping layer configuration. A finite element formulation is introduced to model the constrained layer damping beam. The four-parameter fractional derivative model and the Arrhenius shift factor are used to describe dynamic characteristics of viscoelastic material with respect to frequency and temperature. Frequency-dependent complex-valued eigenvalue problems are solved by using a simple re-substitution algorithm in order to obtain the loss factor of each mode and responses of the structure. The results of the numerical example show that the proposed method can reduce frequency responses of beam at peaks only by reconfiguring the layout of constrained damping layer within a limited weight constraint.

점탄성 감쇠기를 설치한 건물의 모드해석 (Modal Analysis of a Building with Viscoelastic Dampers)

  • 김진구;민경원
    • 전산구조공학
    • /
    • 제11권1호
    • /
    • pp.171-178
    • /
    • 1998
  • 점탄성감쇠기가 장치된 건물은 감쇠력과 강성이 증가하며 부가되는 감쇠력에 의하여 비고전적 감쇠시스템이 된다. 이러한 경우 비감쇠시스템에서 구한 고유값을 이용하여 감쇠행렬을 대각행렬로 변환할 수 없으므로 일반적으로 운동방정식을 2n크기 행렬의 1차 미분방정식 형태로 변환하여 해석하게 된다. 이러한 방법은 일반적인 고전적 감쇠시스템에 비해 복잡하므로 감쇠행렬의 비대각항을 무시하고 해석하는 방법이 이용되기도 한다. 본 논문에서는 이러한 근사적인 방법의 타당성과 이론적 근거를 검증하고 정해와 근사해법을 이용하여 3층 전단건물의 진동특성을 구하여 비교하였다. 결과에 따르면 부가되는 감쇠력이 작을 때는 근사해와 정해가 매우 근접하나 감쇠력이 커질수록 그 오차가 커지는 것으로 나타났다.

  • PDF