• Title/Summary/Keyword: Visco-elasticity

Search Result 33, Processing Time 0.036 seconds

Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory

  • Zenkour, Ashraf M.
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.309-326
    • /
    • 2016
  • The buckling response of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is presented. The nonlocal first-order shear deformation elasticity theory is used for this purpose. The visco-Pasternak's medium is considered by adding the damping effect to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's (shear) foundation modulus. The SLGS be subjected to distributive compressive in-plane edge forces per unit length. The governing equilibrium equations are obtained and solved for getting the critical buckling loads of simply-supported SLGSs. The effects of many parameters like nonlocal parameter, aspect ratio, Winkler-Pasternak's foundation, damping coefficient, and mode numbers on the buckling analysis of the SLGSs are investigated in detail. The present results are compared with the corresponding available in the literature. Additional results are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak's parameters for future comparisons.

Vibration Reaponse Analysis of frames with energy absober installed in Beams (보 제진 프레임의 진동응답해석)

  • Lee, Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.159-166
    • /
    • 1997
  • The purpose of this thesis is to derive a theoretical model of the hysteretic resistance of the visco-elastic damper based on test results of harmonic excitation and to investigate of the basis of theory and experiment the effect of vibration control and response characteristics of portal frames degree vibration systems provided with the damper. The behaviour of a visco-elastic degree under dynamic loading is idealized by a model of the theory of visco-elasticity, i.e. a four-parameter model formed as a parallel combination of Maxwell fluid and Kelvin-Voigh models and its constitutive equation is derived. The model parameters are determined for a tested damper from the datas of harmonic excitation tests. The theoretical model of the damper is incorporated in equation fo motion of single degree of freedom. A computer program for solving the equation is written using Runge-kuttas's numerical integration scheme. Using this analysis program test cases of the earthquake excitation are simulated and the results of the simulation are the results of the simulation are the results of the simulation are compared with the test results.

  • PDF

Physical Properties of High-Solid Coatings with Acrylic Resins Containing Caprolactone Group and HDI-Trimer (Caprolactone기 함유 아크릴수지와 HDI-Trimer에 의한 하이솔리드 도료의 도막물성)

  • Jo, Hye-Jin;Shim, Il-Woo;You, Hyuk-Jae;Wu, Jong-Pyo;Kim, Myung-Soo;Hahm, Hyun-Sik;Park, Hong-Soo;Baik, Woon-Phil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.300-305
    • /
    • 2004
  • High-solid coatings were prepared by blending of previosly synthesized acrylic resins and hexamethylene diisocyanate-trimer and curing it at room temperature. The characterization of the films of the prepared coatings was performed. The impact resistance, cross-hatch adhesion, $60^{\circ}$specular gloss, and heat resistance of the films proved to be good, and the pencil hardness and drying time proved to be slightly poor. Especially, there was a remarkable improvement in the heat resistance. This improvement may stem from the regular arrangement of ethyl groups introduced into the acrylic resin. As a result of Rigid-body pendulum visco-elasticity measurement, dynamic $T_g$ values of cured films increased with dynamic $T_g$ values.

A STUDY ON THE VISCO-ELASTIC PROPERTIES OF FOUR CURRENTLY USED TISSUE CONDITIONERS (수종의 조직 양화재에서 탄성 변형과 복원에 관한 연구)

  • Choi Sung-Ho;Shim June-Sung;Moon Hong-Seok;Chung Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.35-47
    • /
    • 2003
  • The dimensional stability of tissue conditioners characterizes the ability of the materials to yield accurate functional impressions of oral mucosa. This study evaluated the viscoelastic property and the linear dimensional changes with the factor of time and thickness of tissue conditioners ($COE-COMFORT^{TM}$, Visco-gel. $COE-SOFT^{TM}$, Soft-Liner). The thickness of these materials were changed (1.5mm, 3.0mm) and the percentage changes in dimension were measured at 1h, 12h, 24h, 36h, 3day, 7day after specimen preparation. From the results large differences appear between the various tissue conditioners. The results suggest that the period recommended for forming functional impression would be 2-3days after insertion in the mouth. in addition. it is important to select tissue conditioners suitable for functional impression because of the wide range of dimensional stability among the materials.

Waves dispersion in an imperfect functionally graded beam resting on visco-Pasternak foundation

  • Saeed I. Tahir;Abdelbaki Chikh;Ismail M. Mudhaffar;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.271-277
    • /
    • 2023
  • This article investigates the effect of viscoelastic foundations on the waves' dispersion in a beam made of ceramic-metal functionally graded material (FGM) with microstructural defects. The beam is considered to be shear deformable, and a simple three-unknown sinusoidal integral higher-order shear deformation beam theory is applied to represent the beam's displacement field. Novel to this study is the investigation of the impact of viscosity damping on imperfect FG beams, utilizing a few-unknowns theory. The stresses and strains are obtained using the two-dimensional elasticity relations of FGM, neglecting the normal strain in the beam's depth direction. The variational operation is employed to define the dispersion relations of the FGM beam. The influences of the material gradation exponent, the beam's thickness, the porosity, and visco-Pasternak foundation parameters are represented. Results showed that phase velocity was inversely proportional to the damping and porosity of the beams. Additionally, the foundation viscous damping had a stronger influence on wave velocity when porosity volume fractions were low.

Rheological Models for Simulations of Concrete Under High-Speed Load (콘크리트 재료의 동적 물성 변화를 모사하기 위한 유변학적(Rheological)모델 개발 및 평가)

  • Hwang, Young Kwang;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.769-777
    • /
    • 2015
  • In this study, the rheological models were introduced and developed to reflect rate dependent tensile behaviour of concrete. In general, mechanical properties(e.g. strength, elasticity, and fracture energy) of concrete are increased under high loading rates. The strength of concrete shows high rate dependency among its mechanical properties, and the tensile strength has higher rate dependency than the compressional strength. To simulate the rate dependency of concrete, original spring set of RBSN(Rigid-Body- Spring-Network) model was adjusted with viscous and friction units(e.g. dashpot and Coulomb friction component). Three types of models( 1) visco-elastic, 2) visco-plastic, and 3) visco-elasto- plastic damage models) are considered, and the constitutive relationships for the models are derived. For validation purpose, direct tensile test were simulated, and characteristics of the three different rheological models were compared with experimental stress-strain responses. Simulation result of the developed visco-elasto-plastic damage(VEPD) model demonstrated well describing and fitting with experimental results.

Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model

  • Bellal, Moussa;Hebali, Habib;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Bourada, Fouad;Mahmoud, S.R.;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.643-655
    • /
    • 2020
  • In the present work, the buckling behavior of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is studied using nonlocal four-unknown integral model. This model has a displacement field with integral terms which includes the effect of transverse shear deformation without using shear correction factors. The visco-Pasternak's medium is introduced by considering the damping effect to the classical foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The SLGS under consideration is subjected to compressive in- plane edge loads per unit length. The influences of many parameters such as nonlocal parameter, geometric ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the buckling response of the SLGSs are studied and discussed.

Study of Skin Elasticity and Wrinkle Properties of Elderly Female according to Sasang Constitution-based Health State (고령자 여성의 체질건강수준에 따른 피부 탄성 및 주름 특성 연구)

  • Kim, Young-Min;Jung, Chang-Jin;Ku, Bon-Cho;Jeon, Young-Ju;Kim, Keun-Ho;Kim, Jong-Yeol;Kim, Jaeuk U.
    • Korean Journal of Oriental Medicine
    • /
    • v.18 no.3
    • /
    • pp.119-126
    • /
    • 2012
  • 1. Objectives Sasang constitutional medicine is unique in Korean traditional medicine. It diagnoses and treats patients based on his/her Sasang constitution (SC). Skin properties have been used as an effective diagnostic component in the classification of SC types in clinics. In this paper, we investigated the SC-based health relevance of skin elasticity and wrinkle properties. 2. Methods The skin elasticity and wrinkle of forearm and dorsal hand were measured in 299 elderly female subjects. To determine the subject's Sasang constitution, we adopted the classification results from a newly developed SC diagnostic tool. The health states of the subjects were scored by two Korean traditional medical doctors, by whom each subject was categorized either into the healthy state or the unhealthy state. 3. Results As a result, the elasticity hysteresis of forearm (E_HYS), the visco-elasticity (VE_MEAN), and the wrinkle frequency energy of backhand (W_HAND) showed significant differences between Taeum-in group and Soeum-in group. In case of the Soeum-in on unhealthy state, VE_MEAN was decreased significantly (p<.05). W_HAND and W_ARM_H of the healthy Taeum-in were less than those of the unhealthy Taem-in. 4. Conclusions In this study we showed that, for an elderly female population, skin elasticity and viscosity were significantly different not only between each SC type but also between healthy group and unhealthy group in each constitution. In particular, Soeum-in subjects were inferred to be superior in retaining skin softness when they were healthy, and Taeum-in subjects were easy to lose their firmness of skin surface when they became unhealthy.

An Experimental study on the Viscoelastic Coefficient of Polystyrene (폴리스티렌의 점탄성 계수에 관한 실험적 연구)

  • Yoon, Kyung-Hwan;Yu, Bong-Kun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.751-754
    • /
    • 2000
  • Stress relaxation experiments were performed to obtain the material properties to be used in the linear viscoelastic study. Master curve of the modulus of polystyrene were obtained by using the time-temperature superposition principle. Because Shyu and Tobolsky's tensile relaxation modulus master curve or Polystyrene material showed very large difference, in-house data were required to calculate the residual stresses in injection-molded products more accurately. Our own experimental data showed that the master curve Shyu's data should be shifted about two orders in material time coordinate.

  • PDF

On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading

  • Shariati, Ali;Ebrahimi, Farzad;Karimiasl, Mahsa;Vinyas, M.;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • This paper investigates the vibration characteristics of flexoelectric nanobeams resting on viscoelastic foundation and subjected to magneto-electro-viscoelastic-hygro-thermal (MEVHT) loading. In this regard, the Nonlocal strain gradient elasticity theory (NSGET) is employed. The proposed formulation accommodates the nonlocal stress and strain gradient parameter along with the flexoelectric coefficient to accurately predict the frequencies. Further, with the aid of Hamilton's principle the governing differential equations are derived which are then solved through Galerkin-based approach. The variation of the natural frequency of MEVHT nanobeams under the influence of various parameters such as the nonlocal strain gradient parameter, different field loads, power-law exponent and slenderness ratio are also investigated.