• Title/Summary/Keyword: Viruses

Search Result 1,530, Processing Time 0.031 seconds

Pathological and molecular comparisons of five distinct species of pepper-infecting Potyviruses (oral)

  • Yoon, H.I.;Chung, H.M.;Ryu, K.H.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.113.2-114
    • /
    • 2003
  • Five pepper-infecting potyviruses, Pepper mottle virus (PepMoV), Chilli veinal mottle virus (CVMV), Pepper veinal mottle virus (PVMV), Pepper severe mosaic virus (PSMV) and Tobacco each virus (TEV), are known filamentous virus and can be infected pepper crops systemically. To understand pathology and genome information of the five viruses on pepper plants, host reactions and sequences were compared to the 5 viruses. Five potyviruses were inoculated onto some typical cultivars of hot peppers and compared their symptoms, and virus accumulations. A set of degenerate primers for potyviruses were applied to 5 viruses and RT-PCR was performed. RT-PCR products containing partial nuclear inclusion b and coat protein (CP) genes were cloned. Then, oligo dT primer and species-specific primer were redesigned to amplify the C-terminal part of CP and 3' noncoding regions of each viruses. Sequences of the viruses were analyzed and compared to serological relationships among the viruses. The data can be useful for screening of potyviruses in pepper plants and pathogen-derived transgenic pepper plant development.

  • PDF

A Proposal of GA Using Symbiotic Evolutionary Viruses and Its Virus Evaluation Techniques

  • Sakakura, Yoshiaki;Taniguchi, Noriyuki;Hoshino, Yukinobu;Kamei, Katsuari
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.679-682
    • /
    • 2003
  • In this paper, we propose a Genetic Algorithm (GA) using symbiotic evolutionary viruses. Our GA is based on both the building block hypothesis and the virus theory of evolution. The proposed GA aims to control a destruction of building blocks by discovering, keeping, and propagating of building blocks based on virus operation. Concretely, we prepare the group of individuals and the group of viruses. In our GA, the group of individuals searches solutions and the group of viruses searches building blocks. These searches done based on the symbiotic relation of both groups. Also, our GA has two types of virus evaluation techniques. One is that each virus is evaluated by the difference of the fitness of an individual between before and after infection of virus. Another is that all viruses aye evaluated by the difference of the fitness of an individual between before and after infection of all viruses. Furthermore, we applied the proposed GA to the minimum value search problem of a test function which has some local solutions far from the optimal solution. And, we discuss a difference of behaviors of the proposed GA based on each virus evaluation techniques.

  • PDF

Detection of Plant Pathogenic Viruses in Commercial Gochujang (Fermented Red Pepper Paste) from Korea

  • Ko, Seoyeon;Kim, Na-Kyeong;Lee, Hyo-Jeong;Ryu, Tae-Ho;Hong, Jin-Sung;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.503-508
    • /
    • 2020
  • The potential transmission of plant pathogenic viruses through processed foods could be a source of concern for global crop production; however, there is a lack of supporting evidence. The present study was conducted to investigate the presence of plant pathogenic viruses in five samples of gochujang (fermented red pepper paste) manufactured in Korea. Several viruses infecting pepper were detected by reverse transcription-polymerase chain reaction, among which the pepper mild mottle virus (PMMoV) was detected in all five samples, at concentrations ranging from 2.8 to 7.0 (log10 copies/ml). In addition, PMMoV was observed by transmission electron microscopy in all five samples. The samples exhibited viral pathogenicity to Nicotiana benthamiana plants, indicating that global trade of processed products could be a possible source of the transmission of plant viruses.

Molecular Detection of Human Enteric Viruses in Urban Rivers in Korea

  • Lee, Cheong-Hoon;Kim, Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1156-1163
    • /
    • 2008
  • We performed RT-nested PCR to study the distribution of human enteric viruses in urban rivers in Korea. During 2002-2003, water samples were collected from four rivers in Gyeonggi Province, South Korea. Among 58 samples, 45 (77.6%), 32 (55.2%), 12 (20.7%), 2 (3.4%), 4 (6.9%), and 4 (6.9%) showed positive results with adenoviruses (AdVs), enteroviruses (EVs), reoviruses (ReVs), hepatitis A viruses (HAVs), rotaviruses (RoVs), and sapoviruses (SVs), respectively. According to the binary logistic regression model, the occurrence of each enteric virus, except ReVs and HAVs, was not statistically correlated with the water temperature and levels of fecal coliforms (P<0.05). AdVs were most often detected; only 4 samples (6.9%) were negative for AdVs while positive for other enteric viruses in the studied sites. Our results indicated that monitoring human enteric viruses is necessary to improve microbial quality, and that AdVs detection by PCR can be a useful index for the presence of other enteric viruses in aquatic environments.

Inhibition of Herpes Simplex Viruses, Types 1 and 2, by Ginsenoside 20(S)-Rg3

  • Wright, Stephen M.;Altman, Elliot
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.101-108
    • /
    • 2020
  • Infections by herpes simplex viruses have an immense impact on humans, ranging from self-limiting, benign illness to serious, life-threatening diseases. While nucleoside analog drugs are available, resistance has been increasing and currently no vaccine exists. Ginsenosides derived from Panax ginseng have been documented to inhibit several viruses and bolster immune defenses. This study evaluated 12 of the most relevant ginsenosides from P. ginseng for toxicities and inhibition of herpes simplex viruses types 1 and 2 in Vero cells. The effects of test compounds and virus infection were determined using a PrestoBlue cell viability assay. Time course studies were also conducted to better understand at what points the virus life cycle was affected. Non-toxic concentrations of the ginsenosides were determined and ranged from 12.5 μM to greater than 100 μM. Ginsenoside 20(S)-Rg3 demonstrated the greatest inhibitory effect and was active against both HSV-1 and HSV-2 with an IC50 of approximately 35 μM. The most dramatic inhibition-over 100% compared to controls-occurred when the virus was exposed to 20(S)-Rg3 for 4 h prior to being added to cells. 20(S)-Rg3 holds promise as a potential chemotherapeutic agent against herpes simplex viruses and, when used together with valacyclovir, may prevent increased resistance to drugs.

Viruses Associated with Fig Mosaic Disease in Different Fig Varieties in Montenegro

  • Latinovic, Jelena;Radisek, Sebastjan;Bajceta, Milija;Jakse, Jernej;Latinovic, Nedeljko
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.32-40
    • /
    • 2019
  • Symptoms of fig mosaic disease have been noticed on leaves of fig (Ficus carica) for several decades, in Montenegro. In 2014, leaf samples were collected from trees of six fig cultivars in a plantation located in the main fig-producing area of Montenegro, to study the disease. After RNA isolation, samples were tested by RT-PCR for detection of nine fig viruses and three viroids. Four viruses were detected: fig leaf mottle-associated virus 1 (FLMaV-1), fig mosaic virus (FMV), fig mild mottle-associated-virus (FMMaV) and fig badnavirus 1 (FBV-1). Most of the viruses were present in mixed infections. The amplicons of the viruses were directly sequenced from both directions. A BLAST search of these sequences revealed sequence identities with their closest counterparts at GenBank of 92, 97, 92 and 100%, for FLMaV-1, FMV, FMMaV and FBV-1, respectively. Different responses in symptom expression due to the various virus combinations detected have been demonstrated. Variety $Su{\check{s}}ilica$ had the least symptom expression, with only one virus (FBV-1) found. Considering that the production of figs in Montenegro is increasing and has a substantial relevance in this geographic location, the results indicate that more attention should be given to improving the phytosanitary condition of fig trees in the country.

Genome-Based Virus Taxonomy with the ICTV Database Extension

  • Kang, Shinduck;Kim, Young-Chang
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.22.1-22.5
    • /
    • 2018
  • In 1966, the International Classification of Viruses (ICNV) was established to standardize the naming of viruses. In 1975, the organization was renamed "International Committee on Taxonomy of Viruses (ICTV)," by which it is still known today. The primary virus classification provided by ICTV in 1971 was for viruses infecting vertebrates, which includes 19 genera, 2 families, and 24 unclassified groups. Presently, the 10th virus taxonomy has been published. However, the early classification of viruses was based on clinical results "in vivo" and "in vitro," as well as on the shape of the Phenotype virus. Due to the development of next-generation sequencing and the accompanying bioinformatics analysis pipelines, a reconstruction of the classification system has been proposed. At a meeting held in Boston, USA between June 9-11, 2016, there was even an in-depth discussion regarding the classification of viruses using metagenomic data. One suggested activity that arose from the meeting was that viral taxonomy should be reconstructed, based on genotype and bioinformatics analysis "in silico." This article describes our efforts to achieve this goal by construction of a web-based system and the extension of an associated database, based on ICTV taxonomy. This virus taxonomy web system was designed specifically to extend the virus taxonomy up to strain and isolation, which was then connected with the NCBI database to facilitate searches for specific viral genes; there are also links to journals provided by the EMBL RESTful API that improves accessibility for academic groups.

Viral Metatranscriptomic Analysis to Reveal the Diversity of Viruses Infecting Satsuma Mandarin (Citrus unshiu) in Korea

  • Hae-Jun Kim;Se-Ryung Choi;In-Sook Cho;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • Citrus cultivation plays a pivotal role, making a significant contribution to global fruit production and dietary consumption. Accurate identification of viral pathogens is imperative for the effective management of plant viral disease in citrus crops. High-throughput sequencing serves as an alternative approach, enabling comprehensive pathogen identification on a large scale without requiring pre-existing information. In this study, we employed HTS to investigate viral pathogens infecting citrus in three different regions of South Korea: Jejudo (Jeju), Wando-gun (Wando), and Dangjin-si (Dangjin). The results unveiled diverse viruses and viroids that exhibited regional variations. Notably, alongside the identification of well-known citrus viruses such as satsuma dwarf virus, citrus tatter leaf virus, and citrus leaf blotch virus (CLBV), this study also uncovered several viruses and viroids previously unreported in Korean citrus. Phylogenetic analysis revealed that majority of identified viruses exhibited the closest affilations with isolates from China or Japan. However, CLBV and citrus viroid-I-LSS displayed diverse phylogenetic positions, reflecting their regional origins. This study advances our understanding of citrus virome diversity and regional dynamics through HTS, emphasizing its potential in unraveling intricate viral pathogens in agriculture. Consequently, it significantly contributes to disease management strategies, ensuring the resilience of the citrus industry.

Oncolytic Viruses - A New Era for Cancer Therapy (종양 용해성 바이러스-암 치료에서의 새 시대)

  • Ngabire, Daniel;Niyonizigiye, Irvine;Kang, Min-jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.824-835
    • /
    • 2019
  • In recent decades, oncolytic viruses (OVs) have extensively been investigated as a potential cancer drug. Oncolytic viruses have primarily the unique advantage in the fact that they can only infect and destroy cancer cells. Secondary, oncolytic viruses induce the activation of specific adaptive immunity which targets tumor-associated antigens that were hidden during the initial cancer progression. In 2015, one genetically modified oncolytic virus, talimogene laherparepvec (T-VEC), was approved by the American Food and Drug Administration (FDA) for the treatment of melanoma. Currently, various oncolytic viruses are being investigated in clinical trials as monotherapy or in combination with preexistent cancer therapies like immunotherapy, radiotherapy or chemotherapy. The efficacy of oncolytic virotherapy relies on the balance between the induced anti-tumor immunity and the anti-viral response. Despite the revolutionary outcome, the development of oncolytic viruses for the treatment of cancer faces a number of obstacles such as delivery method, neutralizing antibodies and induction of antiviral immunity due to the complexity, variability and reactivity of tumors. Intratumoral administration has been successful reducing considerably solid tumors with no notable side effects unfortunately some tumors are not accessible (brain) and require a systemic administration of the oncolytic viruses. In order to overcome these hurdles, various strategies to enhance the efficacy of oncolytic viruses have been developed which include the insertion of transgenes or combination with immune-modulatory substances.

Molecular Characterization of an Avian-origin Reassortant H7N1 Influenza Virus (조류 유래 재조합 H7N1 인플루엔자 바이러스의 분자적 특성 규명)

  • Sun-Woo Yoon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.605-611
    • /
    • 2023
  • Recently, sporadic cases of human infection by genetic reassortants of H7Nx influenza A viruses have been reported; such viruses have also been continuously isolated from avian species. In this study, A/wild bird/South Korea/sw-anu/2023, a novel reassortant of the H7N1 avian influenza virus, was analyzed using full-genome sequencing and molecular characterization. Phylogenetic analysis showed that A/wild bird/South Korea/sw-anu/2023 belonged to the Eurasian lineage of H7Nx viruses. The polymerase basic (PB)2, PB1, polymerase acidic (PA), and nucleoprotein (NP) genes of these viruses were found to be closely related to those of avian influenza viruses isolated from wild birds, while the hemagglutinin (HA), neuraminidase (NA), matrix (M), and nonstructural (NS) genes were similar to those of avian influenza viruses isolated from domestic ducks. In addition, A/wild bird/South Korea/sw-anu/2023 also had a high binding preference for avian-specific glycans in the solid-phase direct binding assay. These results suggest the presence of a new generation of H7N1 avian influenza viruses in wild birds and highlight the reassortment of avian influenza viruses found along the East Asian-Australasian flyway. Overall, H7Nx viruses circulate worldwide, and mutated H7N1 avian viruses may infect humans, which emphasizes the requirement for continued surveillance of the H7N1 avian influenza virus in wild birds and poultry.