• 제목/요약/키워드: Virus-like particle vaccines

검색결과 9건 처리시간 0.024초

Recent progress in vaccine development targeting pre-clinical human toxoplasmosis

  • Ki-Back Chu;Fu-Shi Quan
    • Parasites, Hosts and Diseases
    • /
    • 제61권3호
    • /
    • pp.231-239
    • /
    • 2023
  • Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.

Virus-Like Particles Expressing Toxoplasma gondii Rhoptry Protein 18 Induces Better Protection Than Rhoptry Protein 4 against T. gondii Infection

  • Kang, Hae-Ji;Lee, Su-Hwa;Chu, Ki-Back;Lee, Dong-Hun;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • 제56권5호
    • /
    • pp.429-435
    • /
    • 2018
  • Toxoplasma gondii is a ubiquitous protozoan parasite responsible for causing toxoplasmosis. Preventive measures for toxoplasmosis are currently lacking and as such, development of novel vaccines are of urgent need. In this study, we generated 2 virus-like particles (VLPs) vaccines expressing T. gondii rhoptry protein 4 (ROP4) or rhoptry protein 18 (ROP18) using influenza matrix protein (M1) as a core protein. Mice were intranasally immunized with VLPs vaccines and after the last immunization, mice were challenged with ME49 cysts. Protective efficacy was assessed and compared by determining serum antibody responses, body weight changes and the reduction of cyst counts in the brain. ROP18 VLPs-immunized mice induced greater levels of IgG and IgA antibody responses than those immunized with ROP4 VLPs. ROP18 VLPs immunization significantly reduced body weight loss and the number of brain cysts in mice compared to ROP4 VLPs post-challenge. These results indicate that T. gondii ROP18 VLPs elicited better protective efficacy than ROP4 VLPs, providing important insight into vaccine design strategy.

Perspective vaccines for emerging viral diseases in farm animals

  • Ahmad Mohammad Allam;Mohamed Karam Elbayoumy;Alaa Abdelmoneam Ghazy
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권3호
    • /
    • pp.179-192
    • /
    • 2023
  • The world has watched the emergence of numerous animal viruses that may threaten animal health which were added to the perpetual growing list of animal pathogens. This emergence drew the attention of the experts and animal health groups to the fact that it has become necessary to work on vaccine development. The current review aims to explore the perspective vaccines for emerging viral diseases in farm animals. This aim was fulfilled by focusing on modern technologies as well as next generation vaccines that have been introduced in the field of vaccines, either in clinical developments pending approval, or have already come to light and have been applied to animals with acceptable results such as viral-vectored vaccines, virus-like particles, and messenger RNA-based platforms. Besides, it shed the light on the importance of differentiation of infected from vaccinated animals technology in eradication programs of emerging viral diseases. The new science of nanomaterials was explored to elucidate its role in vaccinology. Finally, the role of Bioinformatics or Vaccinomics and its assist in vaccine designing and developments were discussed. The reviewing of the published manuscripts concluded that the use of conventional vaccines is considered an out-of-date approach in eliminating emerging diseases. However, these types of vaccines are considered the suitable plan especially in countries with few resources and capabilities. Piloted vaccines that rely on genetic-based technologies with continuous analyses of current viruses should be the aim of future vaccinology. Smart genomics of emerging viruses will be the gateway to choosing appropriate vaccines, regardless of the evolutionary rates of viruses.

Human papilloma virus in oral cancer

  • Kim, Soung Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제42권6호
    • /
    • pp.327-336
    • /
    • 2016
  • Cervical cancer is the second most prevalent cancer among women, and it arises from cells that originate in the cervix uteri. Among several causes of cervical malignancies, infection with some types of human papilloma virus (HPV) is well known to be the greatest cervical cancer risk factor. Over 150 subtypes of HPV have been identified; more than 40 types of HPVs are typically transmitted through sexual contact and infect the anogenital region and oral cavity. The recently introduced vaccine for HPV infection is effective against certain subtypes of HPV that are associated with cervical cancer, genital warts, and some less common cancers, including oropharyngeal cancer. Two HPV vaccines, quadrivalent and bivalent types that use virus-like particles (VLPs), are currently used in the medical commercial market. While the value of HPV vaccination for oral cancer prevention is still controversial, some evidence supports the possibility that HPV vaccination may be effective in reducing the incidence of oral cancer. This paper reviews HPV-related pathogenesis in cancer, covering HPV structure and classification, trends in worldwide applications of HPV vaccines, effectiveness and complications of HPV vaccination, and the relationship of HPV with oral cancer prevalence.

Production of Recombinant Human Papillomavirus Type 52 L1 Protein in Hansenula polymorpha Formed Virus-Like Particles

  • Liu, Cunbao;Yao, Yufeng;Yang, Xu;Bai, Hongmei;Huang, Weiwei;Xia, Ye;Ma, Yanbing
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.936-940
    • /
    • 2015
  • Human papillomavirus (HPV) type 52 is a high-risk HPV responsible for cervical cancer. HPV type 52 is common around the world and is the most common in some Asian regions. The available prophylactic HPV vaccines protect only from HPV types 16 and 18. Supplementing economical vaccines that target HPV type 52 may satisfactorily complement available prophylactic vaccines. A codon-adapted HPV 52 L1 gene was expressed in the methylotrophic yeast Hansenula polymorpha, which is used as an industrial platform for economical hepatitis B surface antigen particle production in China. We found that the recombinant proteins produced in this expression system could form virus-like particles (VLPs) with diameters of approximately 50 nm. This study suggests that the HPV 52 VLPs produced in this platform may satisfactorily complement available prophylactic vaccines in fighting against HPVs prevalent in Asia.

사이토카인 유전자 함유 바이러스 유사입자의 제조 (Virus-like Particles Containing Cytokine Plasmid DNA)

  • 오유경;손태종;신광숙;강민정;김정목;김남근;고정재;김종국
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권3호
    • /
    • pp.185-190
    • /
    • 2001
  • Human papillomavirus (HPV) infection is known to cause cervical cancers. Human papillomavirus-like particles (VLP) have been studied as preventive vaccines of cervical cancers. To develop VLP as a therapeutic gene carrier, we studied the method to encapsulate cytokine genes in virus-like particles. HPV type 16 capsid L1 genes were amplified by polymerase chain reaction and cloned into T vector. L1 gene was then inserted into baculovirus transfer vector. The clone of baculovirus encoding L1 gene was isolated and used to express L1 protein in Sf 21 insect cells. VLP were purified by CsCl density gradient and ultracentrifugation. VLP were disassembled to capsomer units by treatment of a reducing agent. Given that interleukin-2 (IL-2) genes have been used in anticancer gene therapy and as a molecular adjuvant, IL-2 cytokine plasmids were chosen as a model gene. IL-2 plasmids were incubated with the disassembled capsomer suspension. To reassemble the particles, the mixture of capsomers and cytokine plasmids was dialyzed. The disassembly and reassembly of VLP were confirmed by transmission electron microscopy. The entrapment of cytokine plasmids in reassembled VLP was tested by the stability of plasmids against DNase I. After treatment of reassembled virus-like particles with DNase I, discrete IL-2 DNA band was observed. Our results indicate that IL-2 cytokine plasmid (3.5 kb size) can be encapsulated in the virus-like particles, suggesting the potential of VLP as a gene delivery system. Moreover, VLP containing the adjuvant cytokine plasmids might function as more effective subunit vaccines.

  • PDF

Virus-like Particle (VLP) Mediated Antigen Delivery as a Sensitization Tool of Experimental Allergy Mouse Models

  • Juhyung Kim;Jeein Oh;Chon-Sik Kang;Youn Soo Choi
    • IMMUNE NETWORK
    • /
    • 제20권4호
    • /
    • pp.35.1-35.13
    • /
    • 2020
  • Antigen delivery systems play critical roles in determining the quality and quantity of Ab responses in vivo. Induction of protective antibodies by B cells is essential in the development of vaccines against infectious pathogens, whereas production of IgE antibodies is prerequisite for investigation of allergic responses, or type 1 hypersensitivity reactions. Virus-like particles (VLPs) are efficient platforms for expression of proteins of interest in highly repetitive manners, which grants strong Ab responses to target antigens. Here, we report that delivery of hen egg lysozyme (HEL), a model allergen, through VLP could provoke strong HEL specific IgE Ab responses in mice. Moreover, acute allergic responses were robustly induced in the mice sensitized with VLPs that express HEL, when challenged with recombinant HEL protein. Our data show that antigen delivery in the context of VLPs could function as a platform for sensitization of mice and for subsequent examination of allergic reactions to molecules of interest.

Comparison of Immune Responses to the PCV2 Replicase-Capsid and Capsid Virus-Like Particle Vaccines in Mice

  • Jung, Bo-Kyoung;Kim, Hye-Ran;Lee, Young-Hyeon;Jang, Hyun;Chang, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.482-488
    • /
    • 2019
  • Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS) in pigs. Replicase (Rep) proteins are considered essential for viral replication. Capsid (Cap) protein is the primary immunogenic protein that induces protective immunity. Little is known about comparison on the immunogenicity of PCV2 Rep and Cap fusion protein and Cap protein. In the present study, recombinant baculoviruses expressing the Rep-Cap fusion protein (Bac-Rep-Cap) and the Cap protein (Bac-Cap) of PCV2 were constructed and confirmed with western blot and indirect fluorescence assay. Immunogenicities of the two recombinant proteins were tested in mice. The titers of antibodies were determined with a PCV2-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The $IFN-{\gamma}$ response of immunized mice was measured by ELISA. The mice immunized with the Bac-Rep-Cap and Bac-Cap successfully produced Cap-specific immunoreaction. The mice immunized with the Bac-Cap developed higher PCV2-specific neutralizing antibody titers than mice injected with the Bac-Rep-Cap. $IFN-{\gamma}$ in the Bac-Rep-Cap group was increased compared to those in the Bac-Cap group. Vaccination of mice with the Bac-Rep-Cap showed significantly decreased protective efficacy compared to the Bac-Cap. Our findings will indubitably not only lead to a better understanding of the immunogenicity of PCV2, but also improved vaccines.

어류신경괴사증바이러스(nervous necrosis virus, NNV) 감염에 따른 숙주의 방어기전관련 세포신호전달 (Intracellular Signaling Pathway for Host Defense Mechanisms against Piscine Nervous Necrosis Virus (NNV))

  • 김종오
    • 생명과학회지
    • /
    • 제30권4호
    • /
    • pp.402-409
    • /
    • 2020
  • 신경괴사증바이러스(NNV)는 25 nm의 작은 입자 크기에 RNA1 (3.4 kb, RdRp), RNA2 (1.4 kb, capsid protein) 두 가닥의 RNA를 유전정보를 가진다. NNV는 1980년대 말 처음 보고된 이후 전 세계적으로 120여종의 어류에 감염을 일으키며 심각한 피해를 일으키고 있는 바이러스이다. NNV 감염에 의한 피해를 최소화하고 효율적인 백신들을 개발하기 위해서는 무엇보다 NNV 감염에 따른 세포내 신호전달체계를 이해할 필요가 있다. NNV는 세포내 감염 이후 숙주가 가진 바이러스 복제에 필요한 요소들을 이용할 수 있도록 숙주세포의 cell cycle arrest 등의 기작을 이용하는 것으로 알려졌다. 반면에 숙주 세포는 NNV와 감염된 세포를 제어하기 위해 RIG-1-like receptor signaling pathway 등을 통해 NNV 감염을 인지한 다음 IFN signaling pathway를 통해 항바이러스 작용에 필요한 ISG들을 발현시킨다. 또한 감염된 세포들을 사멸시키기 위해 ER stress를 통한 unfolded protein response (UPR), mitochondria-mediated cell death 작용을 통해 감염된 세포의 apoptosis를 유발한다. NNV 감염 기작에 대한 세포신호전달연구는 아직 초기단계이며 검증해야 할 pathway들이 아직도 많이 남아있는 상황이다. 따라서 NNV 감염과 연관된 다양한 세포신호전달체계를 탐색하고 질병 특이적인 세포신호전달체계를 이해함으로써 신속하고 정확한 진단법 및 백신 개발에 많은 도움이 될 것으로 생각된다.