DOI QR코드

DOI QR Code

Virus-like Particle (VLP) Mediated Antigen Delivery as a Sensitization Tool of Experimental Allergy Mouse Models

  • Juhyung Kim (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Jeein Oh (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Chon-Sik Kang (National Institute of Crop Science, Rural Development Administration (RDA)) ;
  • Youn Soo Choi (Department of Biomedical Sciences, Seoul National University College of Medicine)
  • Received : 2020.03.10
  • Accepted : 2020.07.08
  • Published : 2020.08.31

Abstract

Antigen delivery systems play critical roles in determining the quality and quantity of Ab responses in vivo. Induction of protective antibodies by B cells is essential in the development of vaccines against infectious pathogens, whereas production of IgE antibodies is prerequisite for investigation of allergic responses, or type 1 hypersensitivity reactions. Virus-like particles (VLPs) are efficient platforms for expression of proteins of interest in highly repetitive manners, which grants strong Ab responses to target antigens. Here, we report that delivery of hen egg lysozyme (HEL), a model allergen, through VLP could provoke strong HEL specific IgE Ab responses in mice. Moreover, acute allergic responses were robustly induced in the mice sensitized with VLPs that express HEL, when challenged with recombinant HEL protein. Our data show that antigen delivery in the context of VLPs could function as a platform for sensitization of mice and for subsequent examination of allergic reactions to molecules of interest.

Keywords

Acknowledgement

This work was supported by the Cooperative Research Program for Agriculture Science and Technology Development funded to Choi YS (PJ012527022018) by Rural Development Administration.

References

  1. Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis 2008;47:401-409. https://doi.org/10.1086/589862
  2. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med 2012;18:639-704. https://doi.org/10.1038/nm0512-639
  3. Zou YR, Grimaldi C, Diamond B. Chapter 13: B cells. In: Kelley and Firestein's Textbook of Rheumatology, 10th ed. Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Philadelphia, PA: Elsevier; 2017. p.207-230.e3.
  4. Treanor B. B-cell receptor: from resting state to activate. Immunology 2012;136:21-27. https://doi.org/10.1111/j.1365-2567.2012.03564.x
  5. Volkmann C, Brings N, Becker M, Hobeika E, Yang J, Reth M. Molecular requirements of the B-cell antigen receptor for sensing monovalent antigens. EMBO J 2016;35:2371-2381. https://doi.org/10.15252/embj.201694177
  6. Patterson HC, Kraus M, Kim YM, Ploegh H, Rajewsky K. The B cell receptor promotes B cell activation and proliferation through a non-ITAM tyrosine in the Igα cytoplasmic domain. Immunity 2006;25:55-65. https://doi.org/10.1016/j.immuni.2006.04.014
  7. Puffer EB, Pontrello JK, Hollenbeck JJ, Kink JA, Kiessling LL. Activating B cell signaling with defined multivalent ligands. ACS Chem Biol 2007;2:252-262. https://doi.org/10.1021/cb600489g
  8. Qin Q, Yin Z, Wu X, Haas KM, Huang X. Valency and density matter: deciphering impacts of immunogen structures on immune responses against a tumor associated carbohydrate antigen using synthetic glycopolymers. Biomaterials 2016;101:189-198. https://doi.org/10.1016/j.biomaterials.2016.05.050
  9. Peacey M, Wilson S, Baird MA, Ward VK. Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation. Biotechnol Bioeng 2007;98:968-977. https://doi.org/10.1002/bit.21518
  10. Bayer ME, Blumberg BS, Werner B. Particles associated with Australia antigen in the sera of patients with leukaemia, Down's syndrome and hepatitis. Nature 1968;218:1057-1059. https://doi.org/10.1038/2181057a0
  11. Blumberg BS, Alter HJ, Visnich S. A "new" antigen in leukemia sera. JAMA 1965;191:541-546. https://doi.org/10.1001/jama.1965.03080070025007
  12. Hill BD, Zak A, Khera E, Wen F. Engineering virus-like particles for antigen and drug delivery. Curr Protein Pept Sci 2018;19:112-127.
  13. Rappuoli R. Bridging the knowledge gaps in vaccine design. Nat Biotechnol 2007;25:1361-1366. https://doi.org/10.1038/nbt1207-1361
  14. Roldao A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2010;9:1149-1176. https://doi.org/10.1586/erv.10.115
  15. Marsian J, Fox H, Bahar MW, Kotecha A, Fry EE, Stuart DI, Macadam AJ, Rowlands DJ, Lomonossoff GP. Plant-made polio type 3 stabilized VLPs-a candidate synthetic polio vaccine. Nat Commun 2017;8:245-249. https://doi.org/10.1038/s41467-017-00090-w
  16. Wang JW, Roden RB. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines 2013;12:129-141. https://doi.org/10.1586/erv.12.151
  17. Negrao-Correa D. Importance of immunoglobulin E (IgE) in the protective mechanism against gastrointestinal nematode infection: looking at the intestinal mucosae. Rev Inst Med Trop Sao Paulo 2001;43:291-299. https://doi.org/10.1590/S0036-46652001000500011
  18. Platts-Mills TA. The role of immunoglobulin E in allergy and asthma. Am J Respir Crit Care Med 2001;164:S1-S5. https://doi.org/10.1164/ajrccm.164.supplement_1.2103024
  19. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 2010;125:S73-S80. https://doi.org/10.1016/j.jaci.2009.11.017
  20. Gardt O, Grewe B, Tippler BG, uberla K, Temchura VV. HIV-derived lentiviral particles promote T-cell independent activation and differentiation of naive cognate conventional B2-cells in vitro. Vaccine 2013;31:5088-5098. https://doi.org/10.1016/j.vaccine.2013.08.055
  21. Kolenbrander A, Grewe B, Nemazee D, Uberla K, Temchura V. Generation of t follicular helper cells in vitro: requirement for B-cell receptor cross-linking and cognate B- and T-cell interaction. Immunology 2017;153:214-224.
  22. Nabi G, Genannt Bonsmann MS, Tenbusch M, Gardt O, Barouch DH, Temchura V, Uberla K. GagPolspecific CD4+ T-cells increase the antibody response to Env by intrastructural help. Retrovirology 2013;10:117.
  23. Hsu CL, Chhiba KD, Krier-Burris R, Hosakoppal S, Berdnikovs S, Miller ML, Bryce PJ. Allergic inflammation is initiated by IL-33-dependent crosstalk between mast cells and basophils. PLoS One 2020;15:e0226701.
  24. Manzano-Szalai K, Pali-Scholl I, Krishnamurthy D, Stremnitzer C, Flaschberger I, Jensen-Jarolim E. Anaphylaxis imaging: non-invasive measurement of surface body temperature and physical activity in small animals. PLoS One 2016;11:e0150819.
  25. Sakai K, Yokoyama A, Kohno N, Hiwada K. Effect of different sensitizing doses of antigen in a murine model of atopic asthma. Clin Exp Immunol 1999;118:9-15.
  26. Bodinier M, Leroy M, Ah-Leung S, Blanc F, Tranquet O, Denery-Papini S, Wal JM, Adel-Patient K. Sensitization and elicitation of an allergic reaction to wheat gliadins in mice. J Agric Food Chem 2009;57:1219-1225. https://doi.org/10.1021/jf802898u
  27. Kim YY, Je IG, Kim MJ, Kang BC, Choi YA, Baek MC, Lee B, Choi JK, Park HR, Shin TY, et al. 2-Hydroxy-3-methoxybenzoic acid attenuates mast cell-mediated allergic reaction in mice via modulation of the FcεRI signaling pathway. Acta Pharmacol Sin 2017;38:90-99. https://doi.org/10.1038/aps.2016.112
  28. Banzhoff A, Pellegrini M, Del Giudice G, Fragapane E, Groth N, Podda A. MF59-adjuvanted vaccines for seasonal and pandemic influenza prophylaxis. Influenza Other Respir Viruses 2008;2:243-249. https://doi.org/10.1111/j.1750-2659.2008.00059.x
  29. Stavnezer J, Guikema JE, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol 2008;26:261-292.
  30. Lebman DA, Coffman RL. Interleukin 4 causes isotype switching to IgE in T cell-stimulated clonal B cell cultures. J Exp Med 1988;168:853-862. https://doi.org/10.1084/jem.168.3.853
  31. Korsholm KS, Petersen RV, Agger EM, Andersen P. T-helper 1 and T-helper 2 adjuvants induce distinct differences in the magnitude, quality and kinetics of the early inflammatory response at the site of injection. Immunology 2010;129:75-86. https://doi.org/10.1111/j.1365-2567.2009.03164.x
  32. Jensen-Jarolim E, Pali-Scholl I, Roth-Walter F. Outstanding animal studies in allergy I. From asthma to food allergy and anaphylaxis. Curr Opin Allergy Clin Immunol 2017;17:169-179. https://doi.org/10.1097/ACI.0000000000000363
  33. Marozsan AJ, Fraundorf E, Abraha A, Baird H, Moore D, Troyer R, Nankja I, Arts EJ. Relationships between infectious titer, capsid protein levels, and reverse transcriptase activities of diverse human immunodeficiency virus type 1 isolates. J Virol 2004;78:11130-11141. https://doi.org/10.1128/JVI.78.20.11130-11141.2004
  34. Rogers PR, Croft M. Peptide dose, affinity, and time of differentiation can contribute to the Th1/Th2 cytokine balance. J Immunol 1999;163:1205-1213. https://doi.org/10.4049/jimmunol.163.3.1205
  35. Schulke S, Albrecht M. Mouse models for food allergies: Where do we stand? Cells 2019;8:546.
  36. Sun J, Arias K, Alvarez D, Fattouh R, Walker T, Goncharova S, Kim B, Waserman S, Reed J, Coyle AJ, et al. Impact of CD40 ligand, B cells, and mast cells in peanut-induced anaphylactic responses. J Immunol 2007;179:6696-6703.
  37. Tunis MC, Dawicki W, Carson KR, Wang J, Marshall JS. Mast cells and IgE activation do not alter the development of oral tolerance in a murine model. J Allergy Clin Immunol 2012;130:705-715.e1. https://doi.org/10.1016/j.jaci.2012.04.011
  38. Kim C, Kim IH, Kim SI, Kim YS, Kang SH, Moon SH, Kim TS, Kim SK. Comparison of the intraperitoneal, retroorbital and per oral routes for F-18 FDG administration as effective alternatives to intravenous administration in mouse tumor models using small animal PET/CT studies. Nucl Med Mol Imaging 2011;45:169-176.
  39. Zhang Q, Lai K, Xie J, Chen G, Zhong N. Does unrestrained single-chamber plethysmography provide a valid assessment of airway responsiveness in allergic BALB/c mice? Respir Res 2009;10:61.