• Title/Summary/Keyword: Virulence reversion

Search Result 3, Processing Time 0.019 seconds

Evaluation of virulence reversion of an attenuated porcine epidemic diarrhea vaccine strain by serial passages in suckling piglets

  • Da-Jeong Kim;Seung-Chai Kim;Hwan-Ju Kim;Gyeong-Seo Park;Sang Chul Kang;Won-Il Kim
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.3
    • /
    • pp.193-202
    • /
    • 2023
  • Porcine epidemic diarrhea is an infectious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV). Especially, when suckling piglets are infected, the mortality rate is close to 100%. PEDV is classified into G1 and G2 types based on genetic differences. The G2 type PEDV outbreak in the United States in 2013 was highly pathogenic and contagious, and it has spread worldwide and caused continuous economic losses. Most commercial vaccines used are G1 type vaccines, and existing vaccines do not fully protect piglets due to genetic differences. In this study, we evaluated the safety of the newly developed G2 type attenuated HSGP vaccine strain by inoculating it into piglets and testing whether the vaccine virus spreads to the non-vaccinated, negative pigs and whether the vaccine reverts to its virulence during serial passage experiments. Each experiment lasted for 7 days for each passage, and fecal viral titers, clinical symptoms, and weight gain were measured daily. After the experiment, necropsy was performed to measure intestinal virus titer and pathological evaluation. As a result of the first passage, no transmission of the vaccine virus to negative pigs co-housed with vaccinated pigs was observed. In addition, after four consecutive passage experiments, the clinical symptoms and small intestine lesions were gradually alleviated, and no virus was detected in the feces in the fourth passage experiment. Therefore, it was concluded that the vaccine was safe without virulence reversion in accordance with the guidelines of the current licensing authority. However, further studies are needed on the genetic changes and biological characteristics of the mutant virus that occur during successive passages of the attenuated vaccine since the replication and clinical symptoms of the virus increased until the third passage during successive passages of the vaccine virus. Based on this study, it was concluded that virulence reversion and safety evaluation of attenuated vaccines through serial passage in target animals can be useful to evaluate the safety of attenuated viruses.

Polymeric Microspheres As Antigen Delivery Systems

  • Oh, Yu-Kyoung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.115-120
    • /
    • 1996
  • Vaccination has been considered to be the most effective way to control infectious diseases. Currently, many vaccines used in humans are live-attenuated or killed microorganisms. Polio, mumps, and measles vaccines are live-attenuated. Killed vaccines include cholera and pertussis vaccines, These conventional vaccines, however, suffer from some problems. In the case of live-attenuated vaccines, reversion to virulence is observed in a small but significant number of clinical cases each year. In killed vaccines, due to the possible hazard to employees working with live pathogens, the cost of preparation is high. Killed vaccines also need to be given in multiple doses, Furthermore, both live-attenuated and killed vaccines have possible presence of cellular materials leading to side effects. Moreover, there are diseases such as malaria and hepatitis for which conventional attenuated and killed vaccines are not available because the pathogens cannot be grown in sufficient amounts to allow the classical methods to be used.

  • PDF

Time-course Analysis of Biofilm Formation in Quorum Sensing-deficient Bacteria (Quorum sensing 결핍 세균에서 생물막 형성의 시간적 추이 분석)

  • Kim, Soo-Kyoung;Lee, Mi-Nan;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.108-113
    • /
    • 2014
  • Pseudomonas aeruginosa and Vibrio vulnificus are Gram-negative human pathogens, which exert their virulence through quorum sensing (QS) regulation. The infection of these pathogens have been known to be mediated by biofilm formation in many cases and this study carried out the time-course analysis of biofilm formation depending on the QS regulation in P. aeruginosa and V. vulnificus. In P. aeruginosa, our results demonstrated that QS-deficient mutant better attached to surface at initial stage of biofilm formation, but poorly proceeded to the maturation of the biofilm structure, while wild type less attached at initial stage but developed highly structured biofilm at late stage. Because of this, the quantitative comparison of biofilm formation between wild type and the QS mutant showed the reversion; the QS mutant formed more biofilm until 10 h after inoculation than wild type, but wild type formed much more biofilm after 10 h than QS mutant. V. vulnificus has been reported to form more biofilm with the mutation on QS system. When we performed the same time-course analysis of the V. vulnificus biofilm formation, the reversion was not detected even with prolonged culture for 108 h and the QS mutant always forms more biofilm than wild type. These results indicate that the QS regulation negatively affects the attachment at early stage but positively facilitates the biofilm maturation at late stage in P. aeruginosa, while the QS regulation has a negative effect on the biofilm formation throughout the biofilm development in V. vulnificus. Based on our results, we suggest that the developmental stage of biofilm and bacterial species should be considered when the QS system is targeted for biofilm control.