Browse > Article
http://dx.doi.org/10.7845/kjm.2014.4028

Time-course Analysis of Biofilm Formation in Quorum Sensing-deficient Bacteria  

Kim, Soo-Kyoung (Department of Pharmacy, College of Pharmacy, Pusan National University)
Lee, Mi-Nan (Department of Pharmacy, College of Pharmacy, Pusan National University)
Lee, Joon-Hee (Department of Pharmacy, College of Pharmacy, Pusan National University)
Publication Information
Korean Journal of Microbiology / v.50, no.2, 2014 , pp. 108-113 More about this Journal
Abstract
Pseudomonas aeruginosa and Vibrio vulnificus are Gram-negative human pathogens, which exert their virulence through quorum sensing (QS) regulation. The infection of these pathogens have been known to be mediated by biofilm formation in many cases and this study carried out the time-course analysis of biofilm formation depending on the QS regulation in P. aeruginosa and V. vulnificus. In P. aeruginosa, our results demonstrated that QS-deficient mutant better attached to surface at initial stage of biofilm formation, but poorly proceeded to the maturation of the biofilm structure, while wild type less attached at initial stage but developed highly structured biofilm at late stage. Because of this, the quantitative comparison of biofilm formation between wild type and the QS mutant showed the reversion; the QS mutant formed more biofilm until 10 h after inoculation than wild type, but wild type formed much more biofilm after 10 h than QS mutant. V. vulnificus has been reported to form more biofilm with the mutation on QS system. When we performed the same time-course analysis of the V. vulnificus biofilm formation, the reversion was not detected even with prolonged culture for 108 h and the QS mutant always forms more biofilm than wild type. These results indicate that the QS regulation negatively affects the attachment at early stage but positively facilitates the biofilm maturation at late stage in P. aeruginosa, while the QS regulation has a negative effect on the biofilm formation throughout the biofilm development in V. vulnificus. Based on our results, we suggest that the developmental stage of biofilm and bacterial species should be considered when the QS system is targeted for biofilm control.
Keywords
Pseudomonas aeruginosa; Vibrio vulnificus; biofilm formation; quorum sensing; time-course analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Whiteley, M., Lee, K.M., and Greenberg, E.P. 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 13904-13909.   DOI   ScienceOn
2 Williams, P. 2007. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153, 3923-3938.   DOI   ScienceOn
3 Parsek, M.R., and Greenberg, E.P. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27-33.   DOI   ScienceOn
4 Pearson, J.P., Pesci, E.C., and Iglewski, B.H. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179, 5756-5767.   DOI
5 Purevdorj, B., Costerton, J.W., and Stoodley, P. 2002. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68, 4457-4464.   DOI   ScienceOn
6 Roh, J.B., Lee, M.A., Lee, H.J., Kim, S.M., Cho, Y., Kim, Y.J., Seok, Y.J., Park, S.J., and Lee, K.H. 2006. Transcriptional regulatory cascade for elastase production in Vibrio vulnificus: LuxO activates luxT expression and LuxT represses smcR expression. J. Biol. Chem. 281, 34775-34784.   DOI
7 Schuster, M. and Greenberg, E.P. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73-81.   DOI   ScienceOn
8 Schuster, M., Lostroh, C.P., Ogi, T., and Greenberg, E.P. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066-2079.   DOI   ScienceOn
9 Walters, M.C., Roe, F., Bugnicourt, A., Franklin, M.J., and Stewart, P.S. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47, 317-323.   DOI   ScienceOn
10 Welch, M., Mikkelsen, H., Swatton, J.E., Smith, D., Thomas, G.L., Glansdorp, F.G., and Spring, D.R. 2005. Cell-cell communication in Gram-negative bacteria. Mol. Biosyst. 1, 196-202.   DOI   ScienceOn
11 Heydorn, A., Ersboll, B., Kato, J., Hentzer, M., Parsek, M.R., Tolker-Nielsen, T., Givskov, M., and Molin, S. 2002. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol. 68, 2008-2017.   DOI   ScienceOn
12 Hurley, M.N., Camara, M., and Smyth, A.R. 2012. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur. Respir. J. 40, 1014-1023.   DOI
13 Jeong, H.S., Lee, M.H., Lee, K.H., Park, S.J., and Choi, S.H. 2003. SmcR and cyclic AMP receptor protein coactivate Vibrio vulnificus vvpE encoding elastase through the RpoS-dependent promoter in a synergistic manner. J. Biol. Chem. 278, 45072-45081.   DOI   ScienceOn
14 Jones, M.K. and Oliver, J.D. 2009. Vibrio vulnificus: disease and pathogenesis. Infect. Immun. 77, 1723-1733.   DOI   ScienceOn
15 Kim, S.M., Park, J.H., Lee, H.S., Kim, W.B., Ryu, J.M., Han, H.J., and Choi, S.H. 2013. LuxR homologue SmcR is essential for Vibrio vulnificus pathogenesis and biofilm detachment, and its expression is induced by host cells. Infect. Immun. 81, 3721-3730.   DOI
16 Lee, J.H., Lequette, Y., and Greenberg, E.P. 2006. Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol. Microbiol. 59, 602-609.   DOI   ScienceOn
17 Fazli, M., Almblad, H., Rybtke, M.L., Givskov, M., Eberl, L., and Tolker-Nielsen, T. 2014. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ. Microbiol. DOI 10.1111/1462-2920.12448.   DOI   ScienceOn
18 Lequette, Y., Lee, J.H., Ledgham, F., Lazdunski, A., and Greenberg, E.P. 2006. A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol. 188, 3365-3370.   DOI   ScienceOn
19 Matsumoto-Mashimo, C., Guerout, A.M., and Mazel, D. 2004. A new family of conditional replicating plasmids and their cognate Escherichia coli host strains. Res. Microbiol. 155, 455-461.   DOI   ScienceOn
20 Cos, P., Tote, K., Horemans, T., and Maes, L. 2010. Biofilms: an extra hurdle for effective antimicrobial therapy. Curr. Pharm. Des. 16, 2279-2295.   DOI   ScienceOn
21 Henke, J.M. and Bassler, B.L. 2004. Bacterial social engagements. Trends Cell. Biol. 14, 648-656.   DOI   ScienceOn
22 Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., and Greenberg, E.P. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298.   DOI   ScienceOn
23 Reading, N.C. and Sperandio, V. 2006. Quorum sensing: the many languages of bacteria. FEMS Microbiol. Lett. 254, 1-11.   DOI   ScienceOn
24 Page, M.G. and Heim, J. 2009. Prospects for the next anti-Pseudomonas drug. Curr. Opin. Pharmacol. 9, 558-565.   DOI   ScienceOn
25 Huq, A., Whitehouse, C.A., Grim, C.J., Alam, M., and Colwell, R.R. 2008. Biofilms in water, its role and impact in human disease transmission. Curr. Opin. Biotechnol. 19, 244-247.   DOI   ScienceOn