• Title/Summary/Keyword: Virulence

Search Result 917, Processing Time 0.03 seconds

Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors

  • Naqvi, Ahmad Abu Turab;Anjum, Farah;Khan, Faez Iqbal;Islam, Asimul;Ahmad, Faizan;Hassan, Md. Imtaiyaz
    • Genomics & Informatics
    • /
    • v.14 no.3
    • /
    • pp.125-135
    • /
    • 2016
  • Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.

Carbamoyl Phosphate Synthase Subunit CgCPS1 Is Necessary for Virulence and to Regulate Stress Tolerance in Colletotrichum gloeosporioides

  • Mushtaq, Aamar;Tariq, Muhammad;Ahmed, Maqsood;Zhou, Zongshan;Ali, Imran;Mahmood, Raja Tahir
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.232-242
    • /
    • 2021
  • Glomerella leaf spot (GLS) is a severe infectious disease of apple whose infective area is growing gradually and thus poses a huge economic threat to the world. Different species of Colletotrichum including Colletotrichum gloeosporioides are responsible for GLS. For efficient GLS control, it is important to understand the mechanism by which the cruciferous crops and C. gloeosporioides interact. Arginine is among one of the several types of amino acids, which plays crucial role in biochemical and physiological functions of fungi. The arginine biosynthesis pathway involved in virulence among plant pathogenic fungi is poorly understood. In this study, CgCPS1 gene encoding carbamoyl phosphate synthase involved in arginine biosynthesis has been identified and inactivated experimentally. To assess the effects of CgCPS1, we knocked out CgCPS1 in C. gloeosporioides and evaluated its effects on virulence and stress tolerance. The results showed that deletion of CgCPS1 resulted in loss of pathogenicity. The ∆cgcps1 mutants showed slow growth rate, defects in appressorium formation and failed to develop lesions on apple leaves and fruits leading to loss of virulence while complementation strain (CgCPS1-C) fully restored its pathogenicity. Furthermore, mutant strains showed extreme sensitivity to high osmotic stress displaying that CgCPS1 plays a vital role in stress response. These findings suggest that CgCPS1 is major factor that mediates pathogenicity in C. gloeosporioides by encoding carbamoyl phosphate that is involved in arginine biosynthesis and conferring virulence in C. gloeosporioides.

Serotype Distribution and Virulence Profile of Salmonella enterica Serovars Isolated from Food Animals and Humans in Lagos Nigeria

  • Abraham, Ajayi;Stella, Smith;Ibidunni, Bode-Sojobi;Coulibaly, Kalpy Julien;Funbi, Jolaiya Tolulope;Isaac, Adeleye Adeyemi
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.310-316
    • /
    • 2019
  • Distribution of Salmonella enterica serovars and their associated virulence determinants is wide-spread among food animals, which are continuously implicated in periodic salmonellosis outbreaks globally. The aim of this study was to determine and evaluate the diversity of five Salmonella serovar virulence genes (invA, pefA, cdtB, spvC and iroN) isolated from food animals and humans. Using standard microbiological techniques, Salmonella spp. were isolated from the feces of humans and three major food animals. Virulence determinants of the isolates were assayed using PCR. Clonal relatedness of the dominant serovar was determined via pulsed-field gel electrophoresis (PFGE) using the restriction enzyme, Xbal. Seventy one Salmonella spp. were isolated and serotyped into 44 serovars. Non-typhoidal Salmonella (NTS; 68) accounted for majority (95.8%) of the Salmonella serovars. Isolates from chicken (34) accounted for 47.9% of all isolates, out of which S. Budapest (14) was predominant (34.8%). However, the dominant S. Budapest serovars showed no genetic relatedness. The invA gene located on SPI-1 was detected in all isolates. Furthermore, 94% of the isolates from sheep harbored the spvC genes. The iroN gene was present in 50%, 100%, 88%, and 91% of isolates from human, chicken, sheep, and cattle, respectively. The pefA gene was detected in 18 isolates from chicken and a single isolate from sheep. Notably, having diverse Salmonella serovars containing plasmid encoded virulence genes circulating the food chain is of public health significance; hence, surveillance is required.

Proteomic and Phenotypic Analyses of a Putative Glycerol-3-Phosphate Dehydrogenase Required for Virulence in Acidovorax citrulli

  • Kim, Minyoung;Lee, Jongchan;Heo, Lynn;Lee, Sang Jun;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.36-46
    • /
    • 2021
  • Acidovorax citrulli (Ac) is the causal agent of bacterial fruit blotch (BFB) in watermelon, a disease that poses a serious threat to watermelon production. Because of the lack of resistant cultivars against BFB, virulence factors or mechanisms need to be elucidated to control the disease. Glycerol-3-phosphate dehydrogenase is the enzyme involved in glycerol production from glucose during glycolysis. In this study, we report the functions of a putative glycerol-3-phosphate dehydrogenase in Ac (GlpdAc) using comparative proteomic analysis and phenotypic observation. A glpdAc knockout mutant, AcΔglpdAc(EV), lost virulence against watermelon in two pathogenicity tests. The putative 3D structure and amino acid sequence of GlpdAc showed high similarity with glycerol-3-phosphate dehydrogenases from other bacteria. Comparative proteomic analysis revealed that many proteins related to various metabolic pathways, including carbohydrate metabolism, were affected by GlpdAc. Although AcΔglpdAc(EV) could not use glucose as a sole carbon source, it showed growth in the presence of glycerol, indicating that GlpdAc is involved in glycolysis. AcΔglpdAc(EV) also displayed higher cell-to-cell aggregation than the wild-type bacteria, and tolerance to osmotic stress and ciprofloxacin was reduced and enhanced in the mutant, respectively. These results indicate that GlpdAc is involved in glycerol metabolism and other mechanisms, including virulence, demonstrating that the protein has pleiotropic effects. Our study expands the understanding of the functions of proteins associated with virulence in Ac.

Virulence gene profiles and antimicrobial susceptibility of Salmonella Brancaster from chicken

  • Evie Khoo ;Roseliza Roslee ;Zunita Zakaria;Nur Indah Ahmad
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.82.1-82.12
    • /
    • 2023
  • Background: The current conventional serotyping based on antigen-antisera agglutination could not provide a better understanding of the potential pathogenicity of Salmonella enterica subsp. enterica serovar Brancaster. Surveillance data from Malaysian poultry farms indicated an increase in its presence over the years. Objective: This study aims to investigate the virulence determinants and antimicrobial resistance in S. Brancaster isolated from chickens in Malaysia. Methods: One hundred strains of archived S. Brancaster isolated from chicken cloacal swabs and raw chicken meat from 2017 to 2022 were studied. Two sets of multiplex polymerase chain reaction (PCR) were conducted to identify eight virulence genes associated with pathogenicity in Salmonella (invasion protein gene [invA], Salmonella invasion protein gene [sipB], Salmonella-induced filament gene [sifA], cytolethal-distending toxin B gene [cdtB], Salmonella iron transporter gene [sitC], Salmonella pathogenicity islands gene [spiA], Salmonella plasmid virulence gene [spvB], and inositol phosphate phosphatase gene [sopB]). Antimicrobial susceptibility assessment was conducted by disc diffusion method on nine selected antibiotics for the S. Brancaster isolates. S. Brancaster, with the phenotypic ACSSuT-resistance pattern (ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracycline), was subjected to PCR to detect the corresponding resistance gene(s). Results: Virulence genes detected in S. Brancaster in this study were invA, sitC, spiA, sipB, sopB, sifA, cdtB, and spvB. A total of 36 antibiogram patterns of S. Brancaster with a high level of multidrug resistance were observed, with ampicillin exhibiting the highest resistance. Over a third of the isolates displayed ACSSuT-resistance, and seven resistance genes (β-lactamase temoneira [blaTEM], florfenicol/chloramphenicol resistance gene [floR], streptomycin resistance gene [strA], aminoglycoside nucleotidyltransferase gene [ant(3")-Ia], sulfonamides resistance gene [sul-1, sul-2], and tetracycline resistance gene [tetA]) were detected. Conclusion: Multidrug-resistant S. Brancaster from chickens harbored an array of virulence-associated genes similar to other clinically significant and invasive non-typhoidal Salmonella serovars, placing it as another significant foodborne zoonosis.

Differential Resistance of Radish Cultivars against Bacterial Soft Rot Caused by Pectobacterium carotovorum subsp. carotovorum

  • Soo Min Lee;Jin Ju Lee;Hun Kim;Gyung Ja Choi
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.151-159
    • /
    • 2024
  • Bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most severe diseases in radish cultivation. To control this plant disease, the most effective method has been known to cultivate resistant cultivars. Previously, we developed an efficient bioassay method for investigating resistance levels with 21 resistant and moderately resistant cultivars of radish against a strain Pcc KACC 10421. In this study, our research expanded to investigate the resistance of radish cultivars against six Pcc strains, KACC 10225, KACC 10421, ATCC 12312, ATCC 15713, LY34, and ECC 301365. To this end, the virulence of the six Pcc strains was determined based on the development of bacterial soft rot in seedlings of four susceptible radish cultivars. The results showed that the Pcc strains exhibited different virulence in the susceptible cultivars. To explore the race differentiation of Pcc strains corresponding to the resistance in radish cultivars, we investigated the occurrence of bacterial soft rot caused by the six Pcc strains on the 21 resistant and moderate resistant cultivars. Our results showed that the average values of the area under the disease progress curve were positively correlated with the virulence of the strains and the number of resistant cultivars decreased as the virulence of Pcc strains increased. Taken together, our results suggest that the resistance to Pcc of the radish cultivars commercialized in Korea is more likely affected by the virulence of Pcc strains rather than by race differentiation of Pcc.

Exploration of Virulence Markers and Genes of Listeria monocytogenes Isolated from Animal Products (축산물유래 Listeria monocytogenes의 virulence marker 및 gene 조사)

  • Yi, Chul-Hyeon;Song, Hyeon-Ho;Kim, Mi-Ryung;Kang, Ho-Jo;Son, Won-Geun
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.248-256
    • /
    • 2008
  • To investigate the epidemiological characteristics of 68 Listeria monocytogenes isolates, including 11 reference strains and 57 isolates from imported US beef, domestic meats(beef, pork, chicken meat), raw milk, and milk plants. L. monocytogenes was to evaluate the production of virulence proteins, such as hemolysin(LLO) and lecithinase(LCP), the adsorption of Congo red(CRA), and to detect virulence genes using the polymerase chain reaction(PCR). In the study of virulence protein production, 68(100%), 62(91.2%), and 54(79.4%) of the 68 L. monocytogenes strains were positive for LLO production, the LCP test, and the CRA test, respectively, while strains of other species, such as L. innocua, L. gray, L. murrayi, and L. welshimeri, were not. There were no significant differences between L. monocytogenes serotypes and the ability to produce LLO or LCP. L. monocytogenesstrains had very high hemolytic titers(2 to 16 fold), while the other Listeria species, other than L. ivanovii and L. seeligeri, did not. The hemolysin activities of L. monocytogenes, L. ivanovii, and L. seeligeri usually exceeded 1.0 HU/mg, while those of other Listeria spp. were less than 0.04 HU/mg. In the PCR assay, all of the L. monocytogenes strains contained the hlyA, plcA, plcB, inlA, and inlB virulence genes and produced a product of the expected size. In the PCR of the actA gene, the expected 385-bp product was seen in 39(57.4%) L. monocytogenesstrains, while an unexpected 268-bp product was seen in 29(42.6%) strains. Most L. monocytogenes strains isolated from Hanwoo beef produced the 385-bp actA gene product, while strains of imported US beef usually produced the 268-bp actA gene product. By contrast, no virulence gene products were amplified in the other Listeria spp.

Analysis of virulence gene profiles of Salmonella spp. and Enterococcus faecalis isolated from the freshly slaughtered poultry meats produced in Gyeong-Nam province (경남지역 가금류 도축장 신선육에서 분리한 Salmonella spp.와 Enterococcus faecalis의 독성인자 보유 패턴 분석)

  • Hah, Do-Yun;Cha, Hwi-Geun;Han, Kwon-Seek;Jang, Eun-Hee;Park, Ha-Yeong;Bae, Min-jin;Cho, Ah Reum-Song I;Lee, Hoo-Geun;Ko, Byeong-Hyo;Kim, Do-Kyoung;Hwang, Bo-Won;Kim, Sang-Hyun
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.3
    • /
    • pp.157-163
    • /
    • 2018
  • In order for monitoring of pathogenic bacterial contamination in the freshly slaughtered poultry meats produced in Gyeong-Nam province, we first isolated 4 strains of Salmonella spp. and 32 strains of Enterococcus faecalis from the total 164 samples, then we analyzed potential virulence gene profiles of the bacterial isolates by PCR using species-specific primer. The potential virulence genes we selected in this study were stn, invA, fimA, spvR, and spvC for the isolates of Salmonella spp. and those of esp, cylM, cylA, cylB, gelE, fsrA, fsrB, and fsrC were for the isolates of E. faecalis. The PCR results showed that all 5 virulence genes were detected simultaneously in the all isolates of Salmonella spp. However, there was a diverse occurrence pattern of the virulence genes in the case of E. faecalis. The gene for enterococcal surface protein (esp) was not detected among the isolates (0/32), and the haemolysin gene prevalence rate of cylA, cylB, and cylM were 3.1% (1/32), 9.3% (3/32), and 9.3% (3/32), respectively. Moreover, the genes of gelE, fsrA, fsrB, and fsrC that associated with gelatinase activity were detected in the rate of 53.1% (17/32), 53.1% (17/32), 53.1% (17/32), and 53.1% (17/32), respectively. In conclusion, in the isolates of Salmonella spp., all possessed 5 virulence genes tested, suggesting that they are all related with each other clonally. However, in the case of E. faecalis isolates, the occurrence of the haemolysin genes (cylM, cylA, cylB) and the gelatinase genes (gelE, fsrABC) was highly variable among the isolates.

Increased Risk of Severe Gastric Symptoms by Virulence Factors vacAs1c, alpA, babA2, and hopZ in Helicobacter pylori Infection

  • Lee, Dong-Hae;Ha, Jong-Hun;Shin, Jeong-Ih;Kim, Kyu-Min;Choi, Jeong-gyu;Park, Seorin;Park, Jin-Sik;Seo, Ji-Hyeun;Park, Ji-Shook;Shin, Min-Kyoung;Baik, Seung-Chul;Lee, Woo-Kon;Youn, Hee-Shang;Cho, Myung-Je;Kang, Hyung-Lyun;Jung, Myunghwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.368-379
    • /
    • 2021
  • Two virulence factors of Helicobacter pylori, cagA and vacA, have been known to play a role in the development of severe gastric symptoms. However, they are not always associated with peptic ulcer or gastric cancer. To predict the disease outcome more accurately, it is necessary to understand the risk of severe symptoms linked to other virulence factors. Several other virulence factors of H. pylori have also been reported to be associated with disease outcomes, although there are many controversial descriptions. H. pylori isolates from Koreans may be useful in evaluating the relevance of other virulence factors to clinical symptoms of gastric diseases because the majority of Koreans are infected by toxigenic strains of H. pylori bearing cagA and vacA. In this study, a total of 116 H. pylori strains from Korean patients with chronic gastritis, peptic ulcers, and gastric cancers were genotyped. The presence of virulence factors vacAs1c, alpA, babA2, hopZ, and the extremely strong vacuolating toxin was found to contribute significantly to the development of severe gastric symptoms. The genotype combination vacAs1c/alpA/babA2 was the most predictable determinant for the development of severe symptoms, and the presence of babA2 was found to be the most critical factor. This study provides important information on the virulence factors that contribute to the development of severe gastric symptoms and will assist in predicting clinical disease outcomes due to H. pylori infection.

Resistance Characteristics of Chinese Cabbage Cultivars to Black Rot (배추 품종들의 검은썩음병에 대한 저항성 특성)

  • Soo Min Lee;Jin Ju Lee;Yong Ho Choi;Hun Kim;Gyung Ja Choi
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.158-167
    • /
    • 2023
  • Black rot of Chinese cabbage caused by Xanthomonas campestris pv. campestris (Xcc) is one of the most severe diseases in crop cultivation. To define the resistance characteristics of Chinese cabbage to Xcc, we tested the virulence of eight Xcc isolates in four susceptible cultivars of Chinese cabbage. The isolates of Xcc showed different the virulence on the cultivars. On the other hand, we selected 22 resistant or moderately resistant cultivars of Chinese cabbage to Xcc and tested the occurrence of black rot on the cultivars caused by the isolates of Xcc. Mean disease severity of black rot on the Chinese cabbage caused by each isolate was also positively correlated with the virulence of Xcc isolates. Furthermore, the development of black rot in each cultivar increased according to virulence of Xcc isolates. The number of resistant cultivars of Chinese cabbage to eight isolates of Xcc decreased according to the virulence increase of bacteria. Taken together, these results suggest that resistance of Chinese cabbage cultivars to Xcc is likely affected by the virulence of Xcc isolates, but not result from race differentiation.