• Title/Summary/Keyword: Virtual valve

Search Result 26, Processing Time 0.034 seconds

Clamping force control of injection molding machine using 2-way cartridge valve based logic circuit (2-방향 카트리지 밸브 기반 로직회로에 의한 사출성형기의 형체력 제어)

  • Cho, Seung Ho
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.51-58
    • /
    • 2016
  • The present study deals with the issue of clamping force control of an injection molding machine using 2-way cartridge valve based logic circuit. The operating principle for the cartridge valve is described with its construction and static opening behavior. Basic module circuits are designed first and analysed according to the basic functions. Then they are combined with a virtual design model for the clamping mechanism to simulate the control performance of the overall system. The backlash inherent in the mechanism is considered while evaluating the time-delay in the process of clamping force build-up. The effects of a couple of design parameters in backlash, i.e., interval and stiffness have been demonstrated in the time-domain.

Development of a new thermal inkjet head with the virtual valve fabricated by MEMS technology (멤스기술을 이용한 가상밸브가 있는 새로운 잉크젯 헤드 개발)

  • Bae, Ki-Deok;Baek, Seog-Soon;Shin, Jong-Woo;Lim, Hyung-Taek;Shin, SuHo;Oh, Yong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1892-1897
    • /
    • 2003
  • A new thermal inkjet printer head on SOI wafer with virtual valve was proposed. It was composed of two rectangular heaters with same size. So we could call it T-jet(Twin jet). T-jet has a lot of merits. It has the advantage of being fabricated with one wafer and is easy to change the size of chamber, nozzle, restrictor and so on. However, above all, It is the best point that T-jet has a virtual valve. And it was manufactured on SOI wafer. The chamber was formed in its upper silicon whose thickness was 40um. The chamber's bottom layer was silicon dioxide of SOI wafer and two heaters were located underneath the chamber's ceiling. And the restirctor was made beside the chamber. Nozzle was molded by process of Ni plating. Ni was 30um thick. Nozzle ejection test was performed by printer head having 56 nozzles in 2 columns with 600NPI(nozzle per inch) and black ink. It measured a drop velocity of 12m/s, a drop volume of 30pl, and a maximum firing frequency of 12KHz for single nozzle ejection. Throwing out the ink drop in whole nozzles at the same time, it was observed that the uniformity of the drop velocity and volume was less than 4%.

  • PDF

A Study on Development of High Flow Solenoid Valves (대유량 솔레노이드 밸브 개발에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Port size 80mm or above large-flow type solenoid valves are extensively used in dust collector and power plants. These multi-stage solenoid valve have few problem. first, multi-solenoid valves are almost depend on imports and there are weak in the brine environment and the low energy efficiency. Because these problem, increased the necessity of research on the development of large flow and high pressure type solenoid valves. In this study, describe the design method of multi-stage solenoid test bench and confirm the influence valve performance on several parameter such as diaphragm orifice diameter. At first, each part has modeled by AMESim simulation tool and combining them. This AMESim virtual multi-stage solenoid valve found influence valve performance on the valve parameter. Finally developed the multi-stage solenoid valve and verified that performance on experimental result.

Tank Pressure Control of PWM Sol V/V for Thrust Control of Launch Vehicle (발사체 추력제어 안정성을 위한 PWM 솔밸브의 탱크압력제어)

  • Lee, Joong-Youp;Hong, Moon-Geun;Han, Sang-Yeop;Kim, Young-Mog
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.565-568
    • /
    • 2006
  • This paper achieved dynamic characteristics with test to use solenoid valve for flight model that have present. Designed pressure control virtual system which PWM solenoid valve to use test result. Examination compared solenoid valve dynamic characteristics in atmosphere and cryogenic fluid and presented technique and valuation method that measured upstream and down stream pressure of solenoid valve, as well as, temperature, excitation voltage etc. These test results could confirm solenoid valve response time and maximum using frequency characteristic at use in atmosphere and cryogenic temperature and this derived design variables pressure control system from those bases.

  • PDF

Computational analysis of the electromechanical performance of mitral valve cerclage annuloplasty using a patient-specific ventricular model

  • Lee, Kyung Eun;Kim, Ki Tae;Lee, Jong Ho;Jung, Sujin;Kim, June-Hong;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • We aimed to propose a novel computational approach to predict the electromechanical performance of pre- and post-mitral valve cerclage annuloplasty (MVCA). Furthermore, we tested a virtual estimation method to optimize the left ventricular basement tightening scheme using a pre-MVCA computer model. The present model combines the three-dimensional (3D) electromechanics of the ventricles with the vascular hemodynamics implemented in a lumped parameter model. 3D models of pre- and post-MVCA were reconstructed from the computed tomography (CT) images of two patients and simulated by solving the electromechanical-governing equations with the finite element method. Computed results indicate that reduction of the dilated heart chambers volume (reverse remodeling) appears to be dependent on ventricular stress distribution. Reduced ventricular stresses in the basement after MVCA treatment were observed in the patients who showed reverse remodeling of heart during follow up over 6 months. In the case who failed to show reverse remodeling after MVCA, more virtual tightening of the ventricular basement diameter than the actual model can induce stress unloading, aiding in heart recovery. The simulation result that virtual tightening of the ventricular basement resulted in a marked increase of myocardial stress unloading provides in silico evidence for a functional impact of MVCA treatment on cardiac mechanics and post-operative heart recovery. This technique contributes to establishing a pre-operative virtual rehearsal procedure before MVCA treatment by using patient-specific cardiac electromechanical modeling of pre-MVCA.

Design of Intelligent Servocontroller for Proportional Flow Control Solenoid Valve with Large Capacity (지능형 대용량 비례유량제어밸브 서보컨트롤러 설계)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • As the technologies of electronic device have advanced these days, most of mechanical systems are designed with electronic control unit to take advantage of control parameter adaption to operating conditions and firmware flexibilities as well. On-board diagnosis, which detects the system malfunction and identifies potential source of error with its own diagnostic criteria, and fail-safe that can switch the mode of operation in view of recognized error characteristics enables easy maintenance and troubleshooting as well as system protection. This paper dealt with the development of diagnosis and fail-safe function for proportional flow control valve. All type of errors related to valve control system components are investigated and assigned to a specific hexadecimal codes. Cumulative error detection algorithm is applied in order for the sensitivity and reliability to be appropriate. Embedded simulator which runs simultaneously with system program provides the virtual error simulation environment for expeditious development of error detection algorithm. The diagnosis function was verified both with solenoid valve and embedded simulator test and it will enhance the valve control system monitoring function.

Real-time SCR-HP(Selective catalytic reduction - high pressure) valve temperature collection and failure prediction using ARIMA (ARIMA를 활용한 실시간 SCR-HP 밸브 온도 수집 및 고장 예측)

  • Lee, Suhwan;Hong, Hyeonji;Park, Jisoo;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.62-67
    • /
    • 2021
  • Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.

FPSO Cargo Pumping 시스템 가상운전 시스템 개발

  • Nam, Ki-Il;Han, Ki-Hun;Chang, Kwang-Pil;Oh, Tae-Young;Chang, Dae-Jun;Song, Seok-Ryong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.251-252
    • /
    • 2006
  • This study developed the virtual operation system for the hydraulic pump system for marine usage. The scope of this study is to develop a process dynamic simulation model for the hydraulic pump system for marine usage, to investigate the process dynamic characteristics using the models, to accomplish the logic diagram for the PLC control and to achieve a human-machine interface (HMI) for the convenience of operators to monitor and control the process. The virtual operation system provides a virtual operation environment for the pumping system, enabling the operators to simulate the change of process variables. The system will assist in developing advanced control logics and then optimal design of the system.

  • PDF

DEVELOPMENT OF AGRICULTURAL HYDRAULIC ROBOT(Part II) - Dynamic Characteristic of Hydraulic System

  • Mikio, Umeda;Michihisa, Iida;Kiyoshi, Namikawa
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.830-839
    • /
    • 1993
  • Agricultural hydraulic robot which was reported in Part Ⅰ had been developed . The robot satisfied performance to intend before development. For actual use, however, it have been necessary to reduce manipulator weigh and to simplify construction of hydraulic control valve. Then, working stress of manipulator link and pressure fluctuation of hydraulic circuit were measured. Step and frequency response tests were done subject to amplitude of reference voltage of 0.1 , 0.3 , 0.5 and 1.0v. and delivery pressure of 3.5 and 5.0MPa. Working stress were about 25% comparing with fatigue strength, Thus, mass of manipulator might be reduce to 30 %. In hydraulic control system, virtual natural frequency of 6.5Hz is produced from the combination of drain passage area shortage of servovalve. Further , because of passage area shortage , working pressure at both side of cylinder was acted on. This phenomenon prevent utilize effectively engine power. Then, control valve for new model was p oposed.

  • PDF

Comparison of chest compression and ventilation volume using LUCAS and manual in virtual reality-based ambulance simulation -A manikin study- (가상실현 기반 구급차에서 루카스와 수기에 의한 가슴압박과 인공호흡 비교 -마네킨 연구-)

  • Lee, Jae-Gook;Kim, Jin-Su;Roh, Sang-Gyun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.22 no.3
    • /
    • pp.67-76
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the quality of chest compressions and ventilation when using an mechanical device(LUCAS) and 2-men manual cardiopulmonary resuscitation(CPR) performed on a minikin, as well as to propose a more effective CPR method during transit. Methods: Data were collected by LUCAS and manual virtual reality based ambulance simulation. Analysis was performed using SPSS software 12.0. The average and standard deviation of chest compression depth and ventilation were analyzed using descriptive statistics and t-test. Results: In the virtual reality based LUCAS and manual CPR results, LUCAS showed better chest compression and lower incomplete chest release than manual CPR. During CPR with a chest compression-ventilation ratio of 30:2 in virtual reality ventilation with bag-valve mask was able to deliver an adequate volume of breathing. Conclusion: It is suggested that rescuers on ambulance may consider using LUCAS as an alternative to high-quality chest compression during transit.