• Title/Summary/Keyword: Virtual task

Search Result 304, Processing Time 0.031 seconds

Influence of Gender on VR Animation Viewing Experiences: from the Perspective of Comfortable Viewing Distance

  • Lin Qu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.191-198
    • /
    • 2023
  • In recent years, we have witnessed a growing popularity of virtual reality (VR) technology. Understanding the factors that contribute to a comfortable VR viewing experience is crucial for its successful implementation. This study specifically explored the role of gender in determining the ideal viewing distance for VR animation. To do so, we enlisted 100 participants, comprising 41 males and 59 females, and had them engage in a VR animation viewing task, during which we recorded their preferred viewing distances. Our findings revealed that there was no significant distinction between males and females regarding their favored VR animation viewing distances. These results suggest that when creating VR content, gender may not be a noteworthy factor to take into account when determining the optimal viewing distances for a comfortable experience.

Analysis of tool grip tasks using a glove-based hand posture measurement system

  • Yun, Myung-Hwan;Freivalds, Andris;Lee, Myun-W.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.596-605
    • /
    • 1994
  • An efficient measurement and evaluation system for hand tool tasks will provide a practical solution to the problem of designing and evaluating manual tool tasks in the workplace. Few studies on the biomechanical analysis of hand postures and tool handling tasks exist because of the lack of appropriate measurement techniques for hand force. A measurement system for the finger forces and joint angles for analysis of manual tool handling tasks was developed in this study. The measurement system consists of a force sensing glove made from twelve Force Sensitive Resistors and an angle-measuring glove (Cyberglove$\^$TM/, Virtual technologies) with eighteen joint angle sensors. A biomechanical model of the hand using the data from the measurement system was also developed. Systems of computerized procedures were implemented integrating the hand posture measurement system, biomechanical analysis system, and the task analysis system for manual tool handling tasks. The measurement system was useful in providing the hand force data needed for an existing task analysis system used in CTD risk evaluation. It is expected that the hand posture measurement developed in this study will provide an, efficient and cost-effective solution to task analysis of manual tool handling tasks. These tasks are becoming increasingly important areas of occupational health and safety of the country.

A Task Scheduling Strategy in Cloud Computing with Service Differentiation

  • Xue, Yuanzheng;Jin, Shunfu;Wang, Xiushuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5269-5286
    • /
    • 2018
  • Task scheduling is one of the key issues in improving system performance and optimizing resource management in cloud computing environment. In order to provide appropriate services for heterogeneous users, we propose a novel task scheduling strategy with service differentiation, in which the delay sensitive tasks are assigned to the rapid cloud with high-speed processing, whereas the fault sensitive tasks are assigned to the reliable cloud with service restoration. Considering that a user can receive service from either local SaaS (Software as a Service) servers or public IaaS (Infrastructure as a Service) cloud, we establish a hybrid queueing network based system model. With the assumption of Poisson arriving process, we analyze the system model in steady state. Moreover, we derive the performance measures in terms of average response time of the delay sensitive tasks and utilization of VMs (Virtual Machines) in reliable cloud. We provide experimental results to validate the proposed strategy and the system model. Furthermore, we investigate the Nash equilibrium behavior and the social optimization behavior of the delay sensitive tasks. Finally, we carry out an improved intelligent searching algorithm to obtain the optimal arrival rate of total tasks and present a pricing policy for the delay sensitive tasks.

Spatial target path following and coordinated control of multiple UUVs

  • Qi, Xue;Xiang, Peng;Cai, Zhi-jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.832-842
    • /
    • 2020
  • The coordination control of multiple Underactuated Underwater Vehicles (UUVs) moving in three dimensional space is investigated in this paper. The coordinated path following control task is decomposed into two sub tasks, that is, path following control and coordination control. In the spatial curve path following control task, path following error dynamics is build in the Serret-Frenet coordinate frame. The virtual reference object can be chosen freely on the desired spatial path. Considering the speed of the UUV, the line-of-sight navigation is introduced to help the path following errors quickly converge to zero. In the coordination control sub task, the communication topology of multiple UUVs is described by the graph theory. The speed of each UUV is adjusted to achieve the coordination. The path following system and the coordination control system are viewed as the feedback connection system. Input-to-state stable of the coordinated path following system can be proved by small gain theorem. The simulation experiments can further demonstrate the good performance of the control method.

Deep Reinforcement Learning-Based Cooperative Robot Using Facial Feedback (표정 피드백을 이용한 딥강화학습 기반 협력로봇 개발)

  • Jeon, Haein;Kang, Jeonghun;Kang, Bo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.264-272
    • /
    • 2022
  • Human-robot cooperative tasks are increasingly required in our daily life with the development of robotics and artificial intelligence technology. Interactive reinforcement learning strategies suggest that robots learn task by receiving feedback from an experienced human trainer during a training process. However, most of the previous studies on Interactive reinforcement learning have required an extra feedback input device such as a mouse or keyboard in addition to robot itself, and the scenario where a robot can interactively learn a task with human have been also limited to virtual environment. To solve these limitations, this paper studies training strategies of robot that learn table balancing tasks interactively using deep reinforcement learning with human's facial expression feedback. In the proposed system, the robot learns a cooperative table balancing task using Deep Q-Network (DQN), which is a deep reinforcement learning technique, with human facial emotion expression feedback. As a result of the experiment, the proposed system achieved a high optimal policy convergence rate of up to 83.3% in training and successful assumption rate of up to 91.6% in testing, showing improved performance compared to the model without human facial expression feedback.

Analysis of Remote Operation involved in Spent Nuclear Fuel Conditioning Process using its Virtual Mockup

  • Yoon, Ji-Sup;Kim, Sung-Hyun;Song, Tai-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.840-845
    • /
    • 2004
  • The remote operation of the Advanced Spent Fuel Conditioning Process (ACP) is analyzed by using the 3D graphic simulation tools. Since the spent nuclear fuel, which is a high radioactive material, is processed in the ACP, the ACP equipment is operated in intense radiation fields as well as in a high temperature. Thus, the equipment is operated in a remote manner and should be designed with consideration for the remote handling and maintenance. Also suitable remote handling technology needs to be developed along with the design of the process concepts. For this we developed a graphic simulator, which provides the capability of verifying the remote operability of the ACP without the fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the graphic simulator, not in the real environment. The graphic simulator will substantially reduce the cost of the development of the remote handling and maintenance procedure as well as the process equipment, while at the same time developing a remote maintenance concept that is more reliable, easier to implement, and easier to understand.

  • PDF

Virtual Analysis of the Remote Operation of the ACP

  • Yoon Ji sup;Kim Sung Hyun;Song Tai Gil;Lim Kwang-Mook
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.60-75
    • /
    • 2005
  • The remote operation of the Advanced Spent Fuel Conditioning Process (ACP) is analyzed by using the 3D graphic simulation tools. The ACP equipment operates in intense radiation fields as well as in a high temperature. Thus, the equipment should be designed in consideration of the remote handling and maintenance. As well as suitable remote handling and maintenance method needs to be provided. To provide such remote operation technology, we developed the graphic simulator which provides the capability of verifying the remote operability of the ACP without fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in a computer, not in a real environment. In this way the graphic simulator can substantially reduce the design cost of the remote operation process and the equipment. Also it can provide new operation concept that is more reliable, easier to implement, and easier to understand.

  • PDF

The Influence of Additional Haptic Feedback on Interactivity and Body Ownership in Virtual Reality (가상현실 햅틱 피드백 개체의 증가가 상호작용성과 신체소유감에 미치는 영향)

  • Lee, Sanguk;Chung, Donghun
    • Journal of Korea Game Society
    • /
    • v.20 no.5
    • /
    • pp.31-40
    • /
    • 2020
  • The effects of two different types of haptic feedback(one-hand versus two-hand haptic feedback) on interactivity and body ownership were investigated in the virtual reality setting through an experiment. Using within-subject design, participants performed the task of hitting and destroying a ball-shaped object in virtual reality for both, one-hand and two-hand haptic feedback conditions. The results showed that participants tended to report a higher level of interactivity when using two-hand haptic feedback, whereas there was no difference between the two conditions in a sense of body ownership.

A Study of Virtual Private Network On based Environment IP Security Simulations Quality of Service Guarantee (IPSec 기반 환경하에서 QoS 보장 가상 사설망 구현 방안 연구)

  • Kim, Jeong-Hun;Yoe, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.150-153
    • /
    • 2001
  • Today Internet is only Best-Effort service. During the past few years, new types of internet applications which require performance beyond the best-effort service that is provided by the current internet have emerged. These applications required QoS(Quality of Services) guarantee and Security between end-to-end. In this paper simulations Differentiated Services that IETF(Internet Engineering Task Forte) has proposed one of QoS(Quality of Services) guarantee VPN(Virtual private Network) using QoS(Quality of Services) guarantee and IP Security between end-to-end.

  • PDF

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.