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Abstract 
 

Task scheduling is one of the key issues in improving system performance and optimizing 
resource management in cloud computing environment. In order to provide appropriate 
services for heterogeneous users, we propose a novel task scheduling strategy with service 
differentiation, in which the delay sensitive tasks are assigned to the rapid cloud with 
high-speed processing, whereas the fault sensitive tasks are assigned to the reliable cloud with 
service restoration. Considering that a user can receive service from either local SaaS 
(Software as a Service) servers or public IaaS (Infrastructure as a Service) cloud, we establish 
a hybrid queueing network based system model. With the assumption of Poisson arriving 
process, we analyze the system model in steady state. Moreover, we derive the performance 
measures in terms of average response time of the delay sensitive tasks and utilization of VMs 
(Virtual Machines) in reliable cloud. We provide experimental results to validate the proposed 
strategy and the system model. Furthermore, we investigate the Nash equilibrium behavior 
and the social optimization behavior of the delay sensitive tasks. Finally, we carry out an 
improved intelligent searching algorithm to obtain the optimal arrival rate of total tasks and 
present a pricing policy for the delay sensitive tasks. 
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1. Introduction 

Cloud computing as a new type of business computing service has been widely used by 
enterprises and individual users. Also cloud computing technology can deal with many 
services across the Internet [1]. According to NIST (National Institute of Standards and 
Technology), service modes in cloud computing are classified as SaaS (Software as a Service), 
PaaS (Platform as a Service) and IaaS (Infrastructure as a Service) [2-4]. IaaS providers supply 
storage space, computing and network resources with which users can execute operating 
systems, applications and any software. PaaS providers supply the software programming 
languages and system development tools to the users to deploy their own applications. SaaS 
providers supply applications to users through a client interface, such as a Web browser. An 
SaaS provider owns a small local data center, and can also acquire resources from public IaaS 
cloud [5-6].  

Obviously, when all the tasks are processed by the local SaaS server, especially when there 
are a large number of tasks, the workload on the local SaaS server is too heavy. It is necessary 
to relieve the pressure on local SaaS server by shunting excess local task flow into public IaaS 
cloud. In [6], in order to minimize the operational cost of SaaS providers exploiting the hybrid 
cloud computing paradigm, Li et al. designed an online dynamic resource provision algorithm 
including long-term scheduling, short-term scheduling and dynamic provisioning. In [7], to 
minimize the cost of the overall infrastructure and maximize SaaS providers’ profits, Liu et al. 
established a cloud service request model with SLA (Service-Level Agreement) constraints, 
and then presented a cost-aware service request scheduling approach based on genetic 
algorithm. In the literatures mentioned above, all the tasks are regarded as homogeneous.  

With the diversification of users requirements for network Quality of Service (QoS), 
service differentiation has been studied for decades under different disciplines, such as 
processor sharing, packet switching, storage systems and Web servers [8]. A key challenge for 
service differentiation is how to satisfy different users. In [9], for the purpose of minimizing 
resource cost under response time constraints of multimedia services, Nan et al. proposed a 
queueing model to describe service differentiation, and optimized cloud resources in the 
first-come first-served (FCFS) scenario and the priority scenario, respectively. In [10], in order 
to share CPU service in clusters of servers, Katsalis et al. proposed Dynamic Weighted Round 
Robin (DWRR) algorithms, and used stochastic control theory to demonstrate that the 
objective of service differentiation is achieved by DWRR. In [11], a new auction-based 
resource allocation framework for cloud systems called Abacus was presented by Ding et al.. 
By exploiting Abacus, the service differentiation for tasks is effective with different budgets, 
utility properties and priorities. In these works, all the services are differentiated as abstract 
categories.  

Inspired by this observation, in this paper, we propose a method to shunt the tasks.  When 
a user requests for service from the SaaS provider, the request is handled by either local data 
center or public IaaS cloud. The public IaaS cloud consists of lots of VMs. Furthermore, we 
differentiate tasks as delay sensitive tasks and fault sensitive tasks. Accordingly, we divide 
public IaaS cloud into the rapid cloud and the reliable cloud to satisfy the requirements from 
heterogeneous users. Based on above, we propose a novel task scheduling strategy with 
service differentiation and establish a hybrid queueing network based system model. 
Moreover, we analyze the average response time of the delay sensitive tasks, and calculate the 
utilization of VMs in the reliable cloud. The reasonability and efficiency of the task scheduling 
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strategy are verified by statistical experiments with analysis and simulation. Furthermore, we 
analyze the Nash equilibrium behavior and the socially optimal behavior of the delay sensitive 
tasks, and improve an intelligent searching algorithm based on Jaya algorithm to obtain the 
socially optimal arrival rate of total tasks effectively. Finally, we present the pricing policy for 
the delay sensitive tasks. 

The contributions of our paper are two-fold. One, a novel task scheduling strategy with 
service differentiation is proposed. With this proposed strategy, the traffic load on the local 
SaaS server can be relieved and diverse requirements from different users can be satisfied. 
Other one, a hybrid queueing network based system model is established to analyze the 
proposed strategy, and a Jaya algorithm is improved to obtain the socially optimal arrival rate. 

The remainder of this paper is organized as follows. In Section 2, we propose a task 
scheduling strategy in cloud computing with service differentiation and establish a hybrid 
queueing network based system model. In Section 3, we analyze the system model in the 
steady state. With statistical experiments, we estimate the system performance of the proposed 
task scheduling strategy in Section 4. In Section 5, we improve an intelligent searching 
algorithm to obtain the socially optimal arrival rate of total tasks, and impose an admission fee 
for the delay sensitive tasks. Finally, Section 6 concludes the whole paper. 

2. Task Scheduling Strategy and System Model 
In this section, we firstly propose a task scheduling strategy with service differentiation for 
SaaS provider. Then, we establish a hybrid queueing network based system model 
accordingly. 

2.1. Task Scheduling Strategy 

With the development of cloud computing, more and more enterprises and individuals tend to 
use cloud service. The users will send out a large number of service requests to the SaaS 
provider. When all the tasks crowd into the local data center, the workload of the local data 
center is too heavy to be handled with. So the local server needs additional infrastructure 
resources to shunt the excess task flow. SaaS providers use a combination of their local servers 
and IaaS cloud infrastructures to carry out the tasks in order to speed up the processing and 
improve the service capacity. In conventional pattern of SaaS provider, all the tasks are 
considered as homogeneous and processed indiscriminately. However, in practice, some users 
need service with less delay, whereas some users need service with higher reliability. That is to 
say, the users are heterogeneous. From view of this scenario, we propose a task scheduling 
strategy with service differentiation.  

When a user requests service from SaaS provider, SaaS provider will schedule this task 
appropriately to the local server or the public IaaS VMs. When the workload is lighter, the 
local server will process the tasks excellently without service differentiation. Hence, fewer 
tasks will be assigned to the IaaS cloud. However, when all the workload is only processed by 
the local SaaS server, with the increase in the workload, the latency of tasks will increase 
accordingly, in order to enhance the experience of users, more tasks should be shunted to the 
IaaS cloud. In this way, the average response time of tasks and the utilization of resources 
should be balanced. According to the service differentiation, we divide public IaaS cloud into 
two groups: the rapid cloud and the reliable cloud. There is a load balancer to coordinate 
heterogeneous requirements. The delay sensitive tasks will be assigned to the rapid cloud with 
high-speed processing, whereas the fault sensitive tasks will be assigned to the reliable cloud 
with service restoration. 
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The working principle of the proposed task scheduling strategy is shown in Fig. 1.  
 

User
Delay sensitive

tasks

Fault sensitive
tasks

SaaS provider

Local SaaS server

Reliable cloud

 Rapid cloud

Failure

.

.

.

User

User

Public IaaS cloud

Load 
balancer

 
Fig. 1. The working principle of the task scheduling strategy 

 
(1) We consider one local SaaS server with a perfect processing result. According to the 

number of total tasks including delay sensitive tasks and fault sensitive tasks, some tasks will 
be assigned to the local SaaS server, other tasks will be assigned to the IaaS cloud.  

(2) The load balancer in IaaS cloud is a VM in practice. According to the ToS (Type of 
Service) of the IP (Internet Protocol) data package, the load balancer will assign the 
heterogeneous tasks to either of the two groups of IaaS VMs. The delay sensitive tasks are 
assigned to the rapid cloud, whereas the fault sensitive tasks are assigned to the reliable cloud.  

(3) The VMs in the rapid cloud are configured with powerful hardware to support the fast 
processing speed. To satisfy the requirements from users with the delay sensitive tasks, the 
VMs in rapid cloud provide cloud service in a best-effort mode.  

(4) The VMs in reliable cloud have the ability of service restoration. The tasks may be 
processed unsuccessfully due to the noisy channel. To detect a fault sensitive task, such as file 
transmission, is processed successfully or not, a checksum is inserted to data frame in the link 
layer. If the checksum is correct, the copy of the data frame will be silently discarded. 
Otherwise, the copy of this data frame will be taken out of the back-up [12] and sent out again, 
i.e., the transmission of this data frame will be restored by the IaaS VM.  

 

2.2. Model Building 
In the proposed task scheduling strategy with service differentiation, the input stream of the 
load balancer in IaaS cloud is part of the tasks from users’ requests, the departure stream of the 
load balancer is the sum of the arrival stream of the rapid cloud and that of the reliable cloud. 
Hence, a hybrid queueing network based system model is established.  

The tasks are supposed to arrive at the SaaS provider as a Poisson process with parameter 
( 0)λ λ > . The process times of a task in the local server, the load balancer, a VM in the rapid 

cloud with high-speed processing and a VM in the reliable cloud with service restoration are 
supposed to follow exponential distribution with parameters 0 0( 0)µ µ > , 1 1( 0)µ µ > , 

2 2( 0)µ µ >  and 3 3( 0)µ µ > , respectively. Obviously, when the arrivals at the SaaS provider 
follow a Poisson process with parameter λ , the arrivals at the load balancer will also follow a 
Poisson process. We assume that a task is assigned to the IaaS cloud with probability 
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(0 1)δ δ≤ ≤  (δ  is called as shunting probability). Therefore, the tasks arrive at the load 
balancer in IaaS cloud with rate δλ , the tasks arrive at the local SaaS server with rate (1 )δ λ− . 
All the buffers are supposed to be infinite.  

For the local SaaS server, we establish an M/M/1 queue. For the load balancer, we 
establish an M/M/1 queue. According to the Burke’s theorem [13], we know that the output of 
the M/M/1 queue with arrival rate δλ  is also a Poisson process with the same parameter. The 
output stream of the load balancer is split between the rapid cloud and the reliable cloud. We 
denote the percentage that the fault sensitive tasks over total tasks as parameter (0 1)p p≤ ≤ . 
Hence, the arrival rate of the fault sensitive tasks at the reliable cloud is pδλ , and the arrival 
rate of the dalay sensitive tasks at the rapid cloud is (1 )p δλ− . For the rapid cloud, we 
establish an M/M/m queue (m is the number of VMs in the rapid cloud), and for the reliable 
cloud, we establish a restoration driven M/M/n queue (n is the number of VMs in the reliable 
cloud).  

3. Model Analysis 
In this section, we analyze the hybrid queueing network based system model in steady state. 
 

3.1. Steady-State Condition 

The hybrid queueing network based system model is composed of four queues, including an 
M/M/1 queue with traffic load 0ρ  established from the view of the local SaaS server, an 
M/M/1 queue with traffic load 1ρ  established from the view of the load balancer, an M/M/m 
queue with traffic load 2ρ  established from the view of the rapid cloud, and a restoration 
driven M/M/n queue with traffic load 3ρ  established from the view of the reliable cloud.  

By taking advantage of the existing results [14], the traffic loads 0ρ , 1ρ  and 2ρ  are given 
as follows:  

 0
0

(1 )δ λρ
µ
−

= ,    1
1

δλρ
µ

= ,    2
2

(1 )p
m

δλρ
µ

−
= .                                (1) 

The traffic load 3ρ  will be discussed in the following subsection.  
The necessary and sufficient condition for the hybrid queueing network based system 

model to be stable is that all the above traffic loads are less than 1.  

3.2. Steady-State Distribution 

We note that the queues established from the views of the local SaaS server, the load balancer 
and the rapid cloud can be obtained from existing literatures. In this subsection, we focus on 
analysis of the restoration driven M/M/n queue.  

As pointed in Section 2, the processing time B  of a task on a VM in the reliable cloud 
follows exponential distribution with parameter 3µ . Let (0 1  1 )θ θ θ θ≤ ≤ , = −  be the 
probability that a fault sensitive task is processed unsuccessfully at a time, θ  is called as error 
rate. We note that the tasks that processed unsuccessfully are still in the system. Let β  be the 
probability that a fault sensitive task processed successfully and leave the system during the 
time interval ( )t t t, + ∆ . β  can be presented as follows:  
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 3{ } ( )P B t t B t t o tβ θ θµ= ≤ + ∆ | > = ∆ + ∆ .                                (2) 

Let ( )N t  be the arrival process of the restoration driven M/M/n queue. { ( ) 0}N t t, ≥  is a 
Poisson process with parameter pδλ , where p  is the percentage that the fault sensitive tasks 
over total tasks in IaaS cloud, δ  is the probability that a task is assigned to the IaaS cloud. Let 

( )X t i= , {0,1,...}i∈  be the total number of fault sensitive tasks (including the tasks that are 
processing) in the restoration driven M/M/n queue at the time instant t . { ( ) 0}X t t, ≥  is a 
Markov process, and we describe { ( ) 0}X t t, ≥  as system state. Let ( )F t k∆ = , 

{ }0 1 ... min( )k i n∈ , , , ,  be the number of tasks processed successfully during the time interval 
( )t t t, + ∆ . ( )F t∆  is a binomial distribution with parameters min( )i n,  and β .  

We prove that the Markov process { ( ) 0}X t t, ≥  for the restoration driven M/M/n queue is 
a birth-and-death process as follows:  

(1) 1( )i iP t, + ∆  denotes the probability that there are i  fault sensitive tasks at the time instant 
t , and ( 1)i +  fault sensitive tasks at the time instant ( )t t+ ∆ . That is, the number of tasks in 
the system increases by one during the time interval ( )t t t, + ∆ . 1( )i iP t, + ∆  can be given as 
follows:  

 

1

min( )

0

( ) { ( ) 1 ( ) }

{ ( ) ( ) ( ) 1 ( ) }

( )  0

i i

i n

k

P t P X t t i X t i

P F t k N t t N t k X t i

p t o t iδλ

, +

,

=

∆ = + ∆ = + | =

= ∆ = , + ∆ − = + | =

= ∆ + ∆ , ≥ .

∑                (3) 

(2) 1( )i iP t, − ∆  denotes the probability that there are i  fault sensitive tasks at the time instant 
t , and ( 1)i −  fault sensitive tasks at the time instant ( )t t+ ∆ . That is, the number of tasks in 
the system decreases by one during the time interval ( )t t t, + ∆ . 1( )i iP t, − ∆  can be given as 
follows:  

1

min( )

1

3

3

( ) { ( ) 1 ( ) }

{ ( ) ( ) ( ) 1 ( ) }

( )  1 2 ... 1,

( )  1 .... 

i i
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k

P t P X t t i X t i
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i t o t i n

n t o t i n n
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, −

,

=
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 ∆ + ∆ , = , , , −= 
∆ + ∆ , = , + ,

∑                (4) 

(3) ( )i jP t, ∆  denotes the probability that there are i  fault sensitive tasks at the time instant 
t , j  fault sensitive tasks at the time instant ( )t t+ ∆ , and 2j i| − |≥ . That is, there are more 
than one arrivals or departures in the system during the time interval ( )t t t, + ∆ . ( )i jP t, ∆  can 
be given as follows:  

 ( ) { ( ) ( ) } ( )  2.i jP t P X t t j X t i o t j i, ∆ = + ∆ = | = = ∆ , | − |≥                       (5) 

(4) ( )i iP t, ∆  denotes the probability that there are i  fault sensitive tasks at the time instant 
t , and i  fault sensitive tasks at the time instant ( )t t+ ∆  too. That is, the number of tasks in the 
system is fixed during the time interval ( )t t t, + ∆ . ( )i iP t, ∆  can be given as follows:  

 
3

( ) { ( ) ( ) }

1 ( ).
i i

i

P t P X t t i X t i

p t t o tδλ µ
, ∆ = + ∆ = | =

= − ∆ − ∆ + ∆
                                       (6) 
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Based on Eqs. (3)-(6), we find that { ( ) 0}X t t, ≥  is a birth-and-death process. The birth rate 
is pδλ , the death rate is given as follows:  

 3
3

3

 1 2 ... ,

 1 2 ....
i i i n

n i n n

θµ
µ

θµ

 , = , , ,= 
, = + , + ,

                                        (7) 

The steady-state condition of the restoration driven M/M/n queue is given as follows:  

3
3

1.p
n
δλρ
θµ

= <                                                          (8) 

Let iπ  be the steady-state distribution of ( )X t . iπ  is the probability that there are i tasks 
in the restoration driven M/M/n queue in steady state. iπ  can be given as follows:  

 lim { ( ) }  0 1 ....i t
P X t i iπ

→∞
= = , = , ,                                          (9) 

In context of the steady-state condition, we can build a set of equilibrium equations as 
follows:  

 
0 3 1

   3 3 1 3 1

3 3 1 3 1

,

( )  ( 1)  1 2 ..., ,

( )  1 2 ....
i i i i

i i i i

p
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δλπ θµ π

δλ µ π θµ π δλπ θµ π
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− +

 =
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
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            (10) 

By solving Eq. (10) and using the normalization condition 
0

1i
i
π

∞

=

=∑ , the steady-state 

distribution iπ  of the restoration driven M/M/n queue can be given as follows:  

 

3 0

3 0
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i
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n
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π
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where 
11

3 3
0

0 3

( ) ( )
(1 )

i nn

i

n n
i n
ρ ρ

π
ρ

−
−

=

 
= + ! ! − 
∑ . 

4. Performance Measures and Statistical Experiments 
In this section, we derive some performance measures and provide statistical experiments to 
evaluate the task scheduling strategy proposed in this paper.  

4.1. Performance Measures 
In our proposed strategy, we focus on the average response time of the delay sensitive tasks 
and the utilization of VMs in the reliable cloud in which the fault sensitive tasks are processed.  

We define the response time of a task as the time duration from a task arrives at the SaaS 
provider to the task is processed completely.  

Let 0[ ]E T  be the average sojourn time of a task processed by the local server, and 1[ ]E T  
be the average sojourn time of a task processed by the load balancer in IaaS cloud. Referencing 
to [14], 0[ ]E T  and 1[ ]E T  are given as follows:  



5276                                          Xue et al., A Task Scheduling Strategy in Cloud Computing with Service Differentiation 

 0 1
0 0 1 1

1 1[ ]       [ ] .
(1 ) (1 )

E T E T
µ ρ µ ρ

= , =
− −

                                 (12) 

Let 2[ ]E T  be the average sojourn time of a delay sensitive task processed by the rapid 
cloud. Referencing to [14], 2[ ]E T  is given as follows:  

 2 02
2 2

2 2

( ) 1[ ]
(1 ) (1 )

mm pE T
p m

ρρ
δλ ρ µ
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− − !

                                 (13) 

where 
11

2 2
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0 2

( ) ( )
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i mm

i
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ρ ρ

ρ

−
−

=

 
= + ! ! − 
∑ . 

The average response time [ ]dsE T  of the delay sensitive tasks can be given as follows:  
 ( )0 1 2[ ] (1 ) [ ] [ ] [ ] .dsE T E T E T E Tδ δ= − + +                                   (14) 

We define the utilization recU  of VMs in the reliable cloud as the probability that the VMs 
are occupied by the fault sensitive tasks. recU  can be calculated as the percentage that the 
average number of occupied VMs over the number of VMs in the reliable cloud. If the number 
of tasks in the reliable cloud is less than the number of VMs, the number of occupied VMs is 
the number of tasks. Otherwise, the number of occupied VMs is the number of VMs. recU  can 
be given as follows:  

1 1

n
i

rec i
i i n

iU
n
π

π
∞

= = +

= +∑ ∑                                                  (15) 

where iπ  is given in Eq. (11).  
 

4.2. Statistical Experiments 

In order to validate the effectiveness of our proposed task scheduling strategy, we provide 
statistical experiments. Based on Eqs. (14) and (15) given in Subsection 4.1, we obtain the 
analysis results using MATLAB. To verify our analytic model, we simulate the proposed task 
scheduling strategy. The simulation results are obtained using MyEclipse2014. In order to 
ensure the accuracy of the simulation experiments as far as possible, we make use of the 
Monte Carlo Method [15], and average over 10 independent runs. From the statistical 
experiments shown in Figs. 2 and 3, we see that the analysis results match well with the 
simulation results.  

In order to make sense for parameter settings and satisfy steady-state condition, we set the 
service rate of the local SaaS server as 0 1.0µ = , the service rate of the load balancer in IaaS 
cloud as 1 0 8µ = . , the service rate of a VM in the rapid cloud with high-speed processing 
as 2 0 2µ = .  and the service rate of a VM in the reliable cloud with service restoration as 

3 0 15µ = . . Unless otherwise specified, the percentage that the fault sensitive tasks over total 
tasks is 0 4p = .  in experiments.  

In conventional task scheduling strategy, all the tasks in SaaS provider are processed 
without service differentiation. By setting the percentage that the fault sensitive tasks over 
total tasks as 0p = , all the tasks are considered as the delay sensitive tasks, we can obtain the 
average response time of the delay sensitive tasks with conventional strategy. By setting the 
percentage that the fault sensitive tasks over total tasks as 1p = , all the tasks are considered as 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018                         5277 

the fault sensitive tasks, we obtain the utilization of VMs in the reliable cloud with 
conventional strategy. In Figures 2 and 3, the solid line represents the analysis results with the 
proposed task scheduling strategy, the dotted line represents the analysis results with the 
conventional task scheduling strategy. 

Taking the number 3m =  of VMs in the rapid cloud as an example, we demonstrate the 
average response time [ ]dsE T  of the delay sensitive tasks versus the arrival rate λ  of total 
tasks in Fig. 2.  
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Fig. 2. Average response time [ ]dsE T  of the delay sensitive tasks 

 
In Fig. 2, we find that, for the same shunting probability δ , the average response time 

[ ]dsE T  of the delay sensitive tasks will increase as the arrival rate λ  of total tasks increases. 
The reason is that as the total arrival rate increases, the arrival rate of the delay sensitive tasks 
will increase accordingly, this will result in an increase in the number of the delay sensitive 
tasks waiting in the buffer. Therefore, the average response time will get greater.  

We also observe that there is a reverse for the curves of average response time [ ]dsE T  of 
the delay sensitive tasks as the arrival rate λ  of total tasks increases. For a smaller arrival rate 
of total tasks, the average response time of the delay sensitive tasks will decrease as the 
shunting probability decreases. We note that the smaller the shunting probability is, the more 
the tasks will be processed by the local SaaS server. That is to say, when there are a small 
number of tasks arriving, if most of the tasks, no matter the delay sensitive tasks or the fault 
sensitive tasks, are processed on the local SaaS server, the average response time of the tasks 
will decrease. The reason is that the service resource of the local SaaS server is sufficient for a 
small number of tasks, and the local SaaS server has a higher processing speed. On the other 
hand, for a larger arrival rate of total tasks, the average response time of the delay sensitive 
tasks will decrease as the shunting probability increases. A larger shunting probability means 
that more tasks will be processed by the IaaS cloud. The processing capacity of the local SaaS 
server is insufficient for plenty of tasks, so more tasks, including the delay sensitive tasks and 
the fault sensitive tasks, will be assigned to the rapid cloud or the reliable cloud, respectively. 
We note that there are many VMs in the IaaS cloud, the service resource of the IaaS cloud is 
sufficient for a large number of tasks. So the average response time of the delay sensitive tasks 
will decrease as the shunting probability increases. In other words, for a smaller arrival rate of 
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total tasks, a smaller shunting probability should be set to decrease the average response time. 
For a larger arrival rate of total tasks, a larger shunting probability should be set to decrease the 
average response time. The average response time of the delay sensitive tasks reaches 
minimum with a certain shunting probability when the arrival rate of total tasks is fixed. 

Compared the solid lines and the dotted lines with the same shunting probability δ , we 
find that the average response time of the delay sensitive tasks with the proposed strategy is 
lower than that with the conventional strategy. That is to say, the proposed task scheduling 
strategy performs better than the conventional task scheduling strategy on the response 
performance of the delay sensitive tasks. 

Taking the number 3n =  of VMs in the reliable cloud and the shunting probability 
0 30δ = .  as an example, we demonstrate the utilization recU  of VMs in the reliable cloud 

versus arrivla rate λ  of total tasks.  
 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

Arrival rate λ of total tasks

U
til

iz
at

io
n  

U
re

c o
f V

M
s 

in
 th

e 
re

lia
bl

e 
cl

ou
d

 

 

Proposed Strategy Analysis
Conventional Strategy Analysis
Simulation  θ = 0.10

 θ = 0.05

 θ = 0.15

 
Fig. 3. Utilization recU  of VMs in the reliable cloud 

 
As seen in Fig. 3, we find that, for the same error rate θ , the utilization recU  of VMs in the 

reliable cloud will increase as the arrivla rate λ  of total tasks increases. The reason is that 
when arrivla rate λ  of total tasks gets larger, more VMs in the reliable cloud are activated to 
process these tasks, so the utilization recU  becomes greater.  

We also observe that for the same arrivla rate λ  of total tasks, the utilization recU  of VMs 
in the reliable cloud will increase as the error rate θ  increases. A higher error rate means that 
more fault sensitive tasks need to be reprocessed, so the tasks will occupy the VMs in the 
reliable cloud for a longer time. Therefore, the utilization of VMs in the reliable cloud will 
increase. The larger the error rate is, the greater the slope of the utilization of VMs in the 
reliable cloud will be. In other words, a higher error rate will make the VMs in the reliable 
cloud much busier. 

Compared the solid lines and the dotted lines with the same error rate θ , we find that the 
utilization of VMs in the reliable cloud with proposed strategy is lower than that with 
conventional strategy. We note that a lower utilization always means a better response 
performance. 
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5. Performance Optimization and Pricing Policy 
In this section, we firstly investigate the Nash equilibrium behavior and the socially optimal 
behavior of the delay sensitive tasks in the proposed task scheduling strategy. Then, in order to 
optimize the system performance with the maximum social profit, we propose a pricing policy 
for the delay sensitive tasks.  

5.1. Performance Optimization 
With the task scheduling strategy proposed in Section 2, we note that all the delay sensitive 
tasks make decisions independently to access the system in order to maximize their benefits. 
In other words, the Nash equilibrium behavior of a delay sensitive task is acted from its own 
viewpoint. Each delay sensitive task desires to access the system and to acquire service 
quickly. However, a higher arrival rate of total tasks means a higher arrival rate of the delay 
sensitive tasks, which will make the average response time of the delay sensitive tasks higher, 
then the individual benefit of each task will decrease. That is to say, the selfish behavior of the 
delay sensitive tasks will lead to a negative benefit for the system. The decision should be 
made at a social level. Therefore, it is necessary to coincide the Nash equilibrium behavior and 
the socially optimal behavior of the delay sensitive tasks.  

In order to investigate the Nash equilibrium behavior and the socially optimal behavior of 
the delay sensitive tasks, we present several assumptions as follows:  

(1) Both of the number of the delay sensitive tasks queueing at the system buffer and the 
number of tasks being processed are unobservable for a newly arriving delay sensitive task.  

(2) The reward for a delay sensitive task processed completely is R .  
(3) The cost of a delay sensitive task staying in the system is C  per unit time.  
(4) The benefits for all the delay sensitive tasks can be added together.  
(5) The service discipline of the delay sensitive tasks is First Come First Served (FCFS).  
We note that when the percentage (1 )p−  that the delay sensitive tasks over total tasks is 

given, the arrival rate of the delay sensitive tasks is determined by the arrival rate of total tasks. 
Therefore, we study the Nash equilibrium behavior and the socially optimal behavior of the 
delay sensitive tasks versus the arrival rate of total tasks.  

The individual benefit function ( )indG λ  of a delay sensitive task can be given as follows:  
 ( ) [ ]ind dsG R CE Tλ = −                                                    (16) 

where [ ]dsE T  is the average response time of the delay sensitive tasks given in Eq. (14). In 
practice, when the users are strict with real-time, the reward R  should be set lower and the 
cost C  be set higher. On the other hand, when the user requirement for real-time is lower, the 
reward R  should be set higher and the cost C  be set lower. 

The social profit function ( )socG λ  is the aggregation of all the individual benefits of the 
arriving delay sensitive tasks. As shown in Subsection 2.2, the arrival rate of the delay 
sensitive tasks at the system is (1 )p λ− . Then ( )socG λ  can be given as follows:  

( ) (1 ) ( [ ]).soc dsG p R CE Tλ λ= − −                                           (17) 

Applying the parameters used in Subsection 4.2, and setting the reward 2 5R = . , the cost 
0 6C = .  as an example, we provide numerical experiments to explore the individual benefit 

function ( )indG λ  and the social profit function ( )socG λ .  
Fig. 4 demonstrates the individual benefit function ( )indG λ  of a delay sensitive task 

versus the arrival rate λ  of total tasks.  
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Fig. 4. Individual benefit ( )indG λ  of a delay sensitive task 

 
In Fig. 4, we observe that for the same shunting probability δ , the individual benefit 
( )indG λ  of a delay sensitive task presents a downtrend with the increase in the arrival rate λ  

of total tasks. The reason is that as the arrival rate of total tasks increases, the arrival rate of the 
delay sensitive tasks will increase certainly, which will inevitably lead to a higher average 
response time of the delay sensitive tasks, then the cost of the delay sensitive tasks will 
increase. Therefore, the individual benefit will decrease accordingly. We also observe that for 
each curve in Fig. 4, there is an unique value of λ  subject to ( ) 0indG λ = , and the unique value 
is called as the Nash equilibrium arrival rate eλ  of total tasks. The Nash equilibrium arrival 
rates eλ  of total tasks are marked with “■” in Fig. 4.  

Fig. 5 demonstrates the social profit function ( )socG λ  of the delay sensitive tasks versus 
the arrival rate λ  of total tasks.  
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Fig. 5. Social profit ( )socG λ  of the delay sensitive tasks 

 
In Fig. 5, we observe that the change trend of the social profit ( )socG λ  of the delay 

sensitive tasks experiences two stages. During the first stage, the social profit ( )socG λ  
presents an uptrend as the arrival rate λ  of total tasks increases. We note that when the arrival 
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rate of total tasks is smaller, the average response time of the delay sensitive tasks is smaller 
too, then the cost of the delay sensitive tasks is smaller. For this case, the reward of the delay 
sensitive tasks is the dominant factor to influence the social profit. The larger the arrival rate of 
total tasks is, the more the reward of the delay sensitive tasks will earn, which means the social 
profit will increase. During the second stage, the social profit ( )socG λ  presents a downtrend as 
the arrival rate λ  of total tasks increases. We also note that as the arrival rate of total tasks 
increases, the average response time of the delay sensitive tasks increases immensely, the cost 
of the delay sensitive tasks will be greater accordingly. For this case, the increase in the 
average response time of the delay sensitive tasks causes more arriving delay sensitive tasks to 
wait in the buffer, and the arriving delay sensitive tasks can not be processed quickly. So the 
cost of the delay sensitive tasks becomes the dominant factor to influence the social profit. A 
bigger arrival rate of total tasks will lead to a greater cost of the delay sensitive tasks, then the 
social profit will decrease and tend to a negative value finally. Therefore, all the curves exhibit 
a property of being concave, which is coincident with what we observed from Fig. 5. The 
maximum social profit is the peak value for each curve, the corresponding arrival rate of total 
tasks is called as the socially optimal arrival rate λ∗  of total tasks, i.e., argmax{ ( )}socGλ λ∗ = . 
The socially optimal arrival rates λ∗  of total tasks are marked with “□” in Fig. 5.  

We note that the social profit ( )socG λ  given in Eq. (17) is nonlinear, the strict 
monotonicity of the social profit is difficult to be addressed. So the socially optimal arrival rate 
of total tasks and the maximum social profit are difficult to be obtained by traditional 
optimization methods. For this reason, we turn to intelligent optimization algorithm to solve 
the socially optimal arrival rate λ∗  of total tasks and give the maximum social profit ( )socG λ∗  
of the delay sensitive tasks.  

Jaya algorithm [16] is a simple yet powerful optimization algorithm to search the best 
solution, and it does not need additional algorithm-specific parameters. The algorithm is based 
on the concept that the solution for a given problem should move towards the best solution and 
should avoid the worst solution. We note that the initial population is an important influence 
factor on the searching capacity of the optimization algorithm. We improve the Jaya algorithm 
by adopting a chaotic map named sine map [17] to generate more diverse initial population.  

The main steps of the improved Jaya algorithm are presented in Algorithm 1.  

Algorithm 1: Improved Jaya algorithm 

Step 1: Initialize the maximum number maxiter  of iterations, the parameter a  (for 
example, 4a = ) of the sine map, the population size N , upper bound upλ  
for the arrival rate of total tasks, lower bound lowλ  for the arrival rate of 
total tasks. Set the initial number of iterations as 0iter = . 

Step 2: Initialize the arrival rate  {1 2 ... }i i Nλ , ∈ , , ,  of total tasks in population using 
sine map:   

( )1 1sin ,  .
4i i
a randλ πλ λ+ = =   

     % rand  is the uniform random variable selected in the interval ( )0,1 .   
Step 3: Make sure each initial arrival rate  {1 2 ... }i i Nλ , ∈ , , ,  of total tasks is under 

constraint condition [ ]i low upλ λ λ∈ , :       
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( ){1 ... }

{1 ... }{1 ... }

min { }
.

max { } min { }
i jj N

i up low
j jj Nj N

λ λ
λ λ λ

λ λ
∈ , ,

∈ , ,∈ , ,

−
= × −

−  

Step 4: Calculate the best arrival rate bestλ  and the worst arrival rate worstλ  of total 
tasks: 

( ) (1 ) ( [ ] )  {1 2 ... },soc i i ds iG p R CE T i Nλ λ= − − , ∈ , , ,  

{1 ... }
argmax{ ( )},best soc i
i N

Gλ λ
∈ , ,

=
 {1 ... }

argmin{ ( )}.worst soc i
i N

Gλ λ
∈ , ,

=  

% [ ]ds iE T  is the average response time of the delay sensitive tasks with iλ  . 
Step 5: Update the arrival rate  {1 2 ... }i i Nλ , ∈ , , ,  of total tasks in population: 

1

{1 ... }

( )1 exp
max { ( )}

iter

u soc i
i i

soc jj N

G
G
λ

λ λ
λ

−

∈ , ,

      = × + −        

 

( ) ( ).best i worst irand randλ λ λ λ+ × − − × −  
if ( ) ( )u

soc i soc iG Gλ λ< ,  
then .u

i iλ λ=  
endif 

Step 6: Update the number of iterations by 1.iter iter= +  
if ,maxiter iter≤  

then go to Step 4. 
else 

{1 ... }
argmax{ ( )}.soc i
i N

Gλ λ∗

∈ , ,
=  

endif 
Step 7: Output λ∗  and ( )socG λ∗ . 

 
The complexity T of the improved Jaya algorithm depends on the number of iterations 
maxiter  and the population size N. The complexity T is given as follows: 

( )maxT O iter N= × .                                                 (18) 

By setting the same parameters used in Figs. 4 and 5 in the improved Jaya algorithm, we 
provide numerical results of the socially optimal arrival rate λ∗  of total tasks, the socially 
optimal arrival rate (1 )p λ∗−  of the delay sensitive tasks and the maximum social profit 

( )socG λ∗  of the delay sensitive tasks for different shunting probabilities δ  in Table 1.  

 
Table 1. Numerical results of socially optimal behavior of the delay sensitive tasks 

Shunting 
probability δ  

Socially optimal 
arrival rate λ∗  of total 

tasks 

Socially optimal arrival rate 
(1 )p λ∗−  of the delay 

sensitive tasks 

Maximum social 
profit ( )socG λ∗  

0.30 0.5855 0.3513 0.2086 
0.35 0.5547 0.3328 0.1609 
0.40 0.4928 0.2957 0.1121 
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Comparing Figs. 4 and 5, we find that, for all the shunting probability δ , the Nash 
equilibrium arrival rates eλ  (marked with “■”) of total tasks are always greater than the 
socially optimal arrival rates λ∗  (marked with “□”) of total tasks, i.e. eλ λ∗> . It means that 
there are more delay sensitive tasks joining the buffer under the Nash equilibrium behavior. To 
maximize the social profit, an appropriate admission fee should be charged to the delay 
sensitive tasks to correct the discrepancy between eλ  and λ

∗  [18].  

5.2. Pricing Policy 

In order to suppress the Nash equilibrium arrival rate eλ  of total tasks to the socially optimal 
arrival rate λ∗  of total tasks, we present a pricing policy for the delay sensitive tasks. The 
individual benefit function ( )indG λ′  of a delay sensitive task with an admission fee f  is 
modified as follows:  

 ( ) [ ] .ind dsG R CE T fλ′ = − −                                               (19) 

The social profit function ( )socG λ′  of the delay sensitive tasks can be modified as follows:  

 
( ) (1 ) ( [ ] ) (1 )

(1 ) ( [ ]).
soc ds

ds

G p R CE T f p f
p R CE T

λ λ λ
λ

′ = − − − + −

= − −
                           (20) 

Comparing Eqs. (18) and (20), we find that ( )socG λ  is the same as ( )socG λ′ . That is, the 
admission fee f  is only charged to each delay sensitive task, but it dose not work on the 
social profit. Actually, the admission fee f  is still in the system, it is just transferred from the 
delay sensitive tasks to the SaaS provider.  

By setting ( ) 0indG λ′ =  in Eq. (19), we can obtain the admission fee f  charged to the 
delay sensitive tasks as follows:  

 [ ].dsf R CE T= −                                                       (21) 

By substituting the socially optimal arrival rate λ∗  of total tasks given in Table 1 into Eq. 
(14), we can calculate the average response time [ ]dsE T  of the delay sensitive tasks 
accordingly. Then we obtain the admission fee f  using Eq. (21).  

In Table 2, we present numerical results for the socially optimal arrival rate λ∗  of total 
tasks, the socially optimal arrival rate (1 )p λ∗−  of the delay sensitive tasks and the admission 
fee f  charged to the delay sensitive tasks for different shunting probabilities δ .  

 
Table 2. Numerical results of pricing policy 

Shunting 
probability δ  

Socially optimal arrival 
rate λ∗  of total tasks 

Socially optimal arrival rate 
(1 )p λ∗−  of the delay sensitive tasks 

Admission 
fee f  

0.30 0.5855 0.3513 0.5937 
0.35 0.5547 0.3328 0.4836 
0.40 0.4928 0.2957 0.3790 

 

From Table 2, we observe that the admission fee f  will decrease as the shunting 
probability δ  increases. Combining Fig. 2 and Table 2, we find that as the shunting 
probability δ  increases, the average response time of the delay sensitive tasks will increase 
accordingly, then the cost of the delay sensitive tasks will increase. For this case, the delay 
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sensitive tasks are reluctant to access the system. In order to attract more delay sensitive tasks 
to access the system, a lower admission fee should be set.  

The results in Table 2 provide the cloud operator a reasonable pricing policy to maximize 
the social profit. 

6. Conclusions 
In this paper, we addressed the balance problem between the average response time of the 
tasks and the utilization of resource in cloud computing environment. We proposed a novel 
task scheduling strategy with service differentiation for the local SaaS server and the public 
IaaS cloud. By building a hybrid queueing network based system model, we presented the 
steady-state distribution of the system. Then we estimated the system performance in terms of 
average response time of the delay sensitive tasks and the utilization of VMs in the reliable 
cloud. The statistical experiments show that the average response time of the delay sensitive 
tasks reaches minimum with a certain shunting probability when the arrival rate of total tasks 
is fixed, while a higher error rate of the fault sensitive tasks leads the VMs in the reliable cloud 
to be much busier. Moreover, we studied the Nash equilibrium behavior and the socially 
optimal behavior of the delay sensitive tasks, and carried out an improved Jaya algorithm to 
obtain the socially optimal arrival rate. Finally, we provided a reasonable pricing policy for the 
delay sensitive tasks to optimize the system socially.  

The achievement in this paper has potential application in managing a public cloud with 
heterogeneous users. In future work, we will study the task scheduling strategy with adaptive 
shunting probability.  
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