• Title/Summary/Keyword: Virtual surgical planning

Search Result 30, Processing Time 0.024 seconds

Computer-aided Maxillofacial ablation and reconstruction Surgery (임상가를 위한 특집 1 - 컴퓨터 기반 악골 종양의 절제 및 재건술)

  • Moon, Seong-Yong;Lim, Sung-Hoon
    • The Journal of the Korean dental association
    • /
    • v.52 no.10
    • /
    • pp.596-601
    • /
    • 2014
  • Computer-aided surgery is popular and useful in the field of oral and maxillofacial surgery, because of the possibility of simulation with a high accuracy. In all aspects of surgery, proper planning facilitates more predictable operative results, however before the use of virtual planning, much of this relied on 2-dimensional (2-D) imaging for treatment planning on a 3-dimensional (3-D) object and surgical trial and error. With real-time instrument positioning and clear anatomic identification, a computer-assisted navigation system (CANS) is exceptionally helpful in maxillofacial surgery. These techniques enable performing precise bony ablation and reconstruction, and also decrease surgical time and donor site defect.

Analytical Osteotomy Model for Three-dimensional Surgical Planning of Opening Wedge High Tibial Osteotomy (개방형 근위경골절골술의 3차원 수술계획을 위한 절골해석모델)

  • Koo, Bon-Yeol;Park, Byoung-Keon;Choi, Dong-Kwon;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.385-398
    • /
    • 2013
  • Opening wedge high tibial osteotomy (OWHTO) is widely used to treat unicompartmental osteoarthritis of the knee caused by degenerative deformations of the anatomical axes of the leg. However, since it is difficult to accurately plan the surgical degrees of adjustment such as coronal correction angle and tibial posterior slope angle to align the axes before the actual procedure, a number of studies have proposed analytical models to solve this problem. While previous analytical models for OWHTO were limited to specific cases, this study proposes an analytical osteotomy model (AOM) and a surgical planning system (SPS) that are suitable for a wide range of tibial morphologies and tibia conditions. The validity and generality of the model were verified in a total of 60 OWHTO cases. Results of the test showed that, as predicted, surgical degrees are affected quite significantly by tibia shape and slope of the resected surface. Comparison of the required surgical degrees and the degrees estimated from virtual surgery simulations using AOM showed a very small average difference of $0.118^{\circ}$. SPS, based on AOM, allows the operating surgeon to easily calculate surgical parameters needed to treat a patient.

Virtual Surgical Planning and Stereolithography-guided Osteotomy for 3 Dimensional Mandibular Reconstruction with Free Fibula Osseous Flaps: A Case Report (비골을 이용한 3차원적 하악골 재건 시 가상모의수술 및 입체조형기법을 이용한 골절단 가이드의 활용: 증례보고)

  • Nam, Woong;Makhoul, Nicholas;Ward, Brent;Helman, Joseph I.;Edwards, Sean
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.5
    • /
    • pp.337-342
    • /
    • 2012
  • The osseous or osteocutaneous free fibula flap has become the gold standard for most mandibular reconstructions because of its favorable osseous characteristics. However, disadvantages, such as the time-consuming reconstructive step, difficulty in performing the osteotomies to precisely recreate the shape of the missing segment of mandible and poor bone-to-bone contact play a role in making the surgeons look for alternative flaps. With the advent of computerized design software, which accurately plans complex 3-dimensional reconstructions, has become a process that is more efficient and precise. However, the ability to transfer the computerized plan into the surgical field with stereolithographic models and guides has been a significant development in advancing reconstruction in the maxillofacial regions. The ability to "pre-plan" the case, mirror and superimpose natural structures into diseased and deformed areas, as well as the ability to reproduce these plans with good surgical precision has decreased overall operative time, and has helped facilitate functional and esthetic reconstruction. We describe a complex case treated with this technique, showing the power and elegance of computer assisted maxillofacial reconstruction from the University of Michigan, Oral and Maxillofacial Surgery.

A simplified CAD/CAM extraoral surgical guide for therapeutic injections

  • Cameron, Andrew;Custodio, Antonio Luis Neto;Bakr, Mahmoud;Reher, Peter
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.21 no.3
    • /
    • pp.253-260
    • /
    • 2021
  • Therapeutic injections into the craniofacial region can be a complex procedure because of the nature of its anatomical structure. This technical note demonstrates a process for creating an extra-oral template to inject therapeutic substances into the temporomandibular joint and the lateral pterygoid muscle. The described process involves merging cone-beam computed tomography data and extra-oral facial scans obtained using a mobile device to establish a correlated data set for virtual planning. Virtual injection points were simulated using existing dental implant planning software to assist clinicians in precisely targeting specific anatomical structures. A template was designed and then 3D printed. The printed template showed adequate surface fit. This innovative process demonstrates a potential new clinical technique. However, further validation and in vivo trials are necessary to assess its full potential.

Implant Fixture Installation in the Anterior Mandible by Use of a Mucosa Supported Surgical Template Based on Computer Assisted Treatment Planning (컴퓨터보조 기반 점막지지 서지컬템프레이트를 이용한 하악전치부 임플란트 식립)

  • Lee, Jee-Ho;Kim, Soung-Min;Kim, Myung-Joo;Park, Jung-Min;Seo, Mi-Hyun;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.158-165
    • /
    • 2011
  • A 73-year-old Korean female patient with a fully edentulous mandible was planned to have five implant fixtures installed in the anterior mandible for the fixed prosthesis. After 3-dimensional (3D) computed tomographic scanning was transferred to OnDemand3D$^{(R)}$ (Cybermed Co., Seoul, Korea) software program for the virtual planning, five fixtures of MK III Groovy RP implants of Branemark System$^{(R)}$ (Nobel Biocare AB Co., Goteborg, Sweden) were installed in the anterior mandible between both mental foramens using In2Guide$^{(R)}$ (CyberMed Co., Seoul, Korea) mucosa-supported surgical template with Quick Guide Kit$^{(R)}$ (Osstem Implant Co., Seoul, Korea) systems. Fixture installations were completed successfully without any complications, such as mental nerve injury, bony bleedings, fenestrations and other unexpected events. Postoperative computed tomographic scans were aligned and fused to the planned implant, then angular and linear deviations were compared with the planned virtual implants. The mean angular deviation between the planned and actual implant axes was $3.42{\pm}1.336^{\circ}$. The mean distance between the planned and actual implant at the neck area was $0.544{\pm}0.290$ mm horizontally and $0.118{\pm}0.079$ mm vertically. The average distance between the planned and actual implant at the apex area was $1.166{\pm}0.566$ mm horizontally and $0.14{\pm}0.091$ mm vertically. These results could be considered more precise and accurate than previous reports, and even our recent results. The entire procedures of this case are reported and reviewed.

Virtual Reality and 3D Printing for Craniopagus Surgery

  • Kim, Gayoung;Shim, Eungjune;Mohammed, Hussein;Kim, Youngjun;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • Purpose Surgery for separating craniopagus twins involves many critical issues owing to complex anatomical features. We demonstrate a 3D printed model and virtual reality (VR) technologies that could provide valuable benefits for surgical planning and simulation, which would improve the visualization and perception during craniopagus surgery. Material & Methods We printed a 3D model extracted from CT images of craniopagus patients using segmentation software developed in-house. Then, we imported the 3D model to create the VR environment using 3D simulation software (Unity, Unity Technologies, CA). We utilized the HTC Vive (HTC & Valve Corp) head-mount-display for the VR simulation. Results We obtained the 3D printed model of craniopagus patients and imported the model to a VR environment. Manipulating the model in VR was possible, and the 3D model in the VR environment enhanced the application of user-friendly 3D modeling in surgery for craniopagus twins. Conclusion The use of the 3D printed model and VR has helped understand complicated anatomical structures of craniopagus patients and has made communicating with other medical surgeons in the field much easier. Further, interacting with the 3D model is possible in VR, which enhances the understanding of the craniopagus surgery as well as the success rate of separation surgery while providing useful information on diagnosing and surgery planning.

Accurate transfer of bimaxillary orthognathic surgical plans using computer-aided intraoperative navigation

  • Chen, Chen;Sun, Ningning;Jiang, Chunmiao;Liu, Yanshan;Sun, Jian
    • The korean journal of orthodontics
    • /
    • v.51 no.5
    • /
    • pp.321-328
    • /
    • 2021
  • Objective: To examine the accuracy of computer-aided intraoperative navigation (Ci-Navi) in bimaxillary orthognathic surgery by comparing preoperative planning and postoperative outcome. Methods: The study comprised 45 patients with congenital dentomaxillofacial deformities who were scheduled to undergo bimaxillary orthognathic surgery. Virtual bimaxillary orthognathic surgery was simulated using Mimics software. Intraoperatively, a Le Fort I osteotomy of the maxilla was performed using osteotomy guide plates. After the Le Fort I osteotomy and bilateral sagittal split ramus osteotomy of the mandible, the mobilized maxilla and the distal mandibular segment were fixed using an occlusal splint, forming the maxillomandibular complex (MMC). Real-time Ci-Navi was used to lead the MMC in the designated direction. Osteoplasty of the inferior border of the mandible was performed using Ci-Navi when facial symmetry and skeletal harmony were of concern. Linear and angular distinctions between preoperative planning and postoperative outcomes were calculated. Results: The mean linear difference was 0.79 mm (maxilla: 0.62 mm, mandible: 0.88 mm) and the overall mean angular difference was 1.20°. The observed difference in the upper incisor point to the Frankfort horizontal plane, midfacial sagittal plane, and coronal plane was < 1 mm in 40 cases. Conclusions: This study demonstrates the role of Ci-Navi in the accurate positioning of bone segments during bimaxillary orthognathic surgery. Ci-Navi was found to be a reliable method for the accurate transfer of the surgical plan during an operation.

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

Surgical Simulation Environment for Replacement of Artificial Knee Joint (CT 영상을 이용한 무릎관절 모의 치환 시술 환경)

  • Kim, Dong-Min
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.119-126
    • /
    • 2003
  • This paper presents a methodology for constructing a surgical simulation environment for the replacement of artificial knee join using CT image data. We provide a user interface of preoperative planning system for performing complex 3-D spatial manipulation and reasoning tasks. Simple manipulation of joystick and mouse has been proved to be both intuitive and accurate for the fitness and the wear expect of joint. The proposed methodology are useful for future virtual medical system where all the components of visualization, automated model generation, and surgical simulation are integrated.

  • PDF

3D simulation and CAD/CAM in orthognathic surgery (임상가를 위한 특집 1 - 턱교정수술에서3D simulation과 CAD/CAM의 활용)

  • Jin, ImGeun;Yang, HoonJoo;Kim, DeaSeung;Yi, Won Jin;Hwang, Soon Jung
    • The Journal of the Korean dental association
    • /
    • v.50 no.11
    • /
    • pp.660-669
    • /
    • 2012
  • We describes the process of 3D virtual treatment planning and of CAD/CAM for surgical splint in orthognathic surgery. The potential benefits and disadvantages of 3D virtual approach and the use of CAD/CAM system for the treatment of the patient with a maxillofacial deformity are discussed. For the more convenient applications,3D software should be improved.