• Title/Summary/Keyword: Virtual spring

Search Result 103, Processing Time 0.022 seconds

Impact of the COVID-19 pandemic on women's health nursing clinical practicums in the spring 2020 semester in Korea: a nationwide survey study

  • Kim, Mijong;Jeong, Geum Hee;Park, Hae Sook;Ahn, Sukhee
    • Women's Health Nursing
    • /
    • v.27 no.3
    • /
    • pp.256-264
    • /
    • 2021
  • Purpose: This study investigated the impact of coronavirus disease 2019 (COVID-19) on women's health nursing clinical practicums in undergraduate nursing schools in Korea during the spring 2020 semester. Methods: A cross-sectional online survey on clinical practicum teaching experiences in the spring 2020 semester was distributed to members of the Korean Society of Women Health Nursing (KSWHN) who taught undergraduate nursing. One faculty member from each of 203 institutions was requested to respond and there were no duplicate participants. Seventy-nine participants (38.9%) responded and 74 responses were analyzed. Descriptive statistics were presented for all survey items. Results: Fifty-two faculty members (70.3%) belonged to universities and 22 (29.7%) taught at colleges. Thirty-eight (51.4%) answered that their institutions had affiliated teaching hospitals. More than half (52.7%) conducted hospital-based clinical practicums either entirely (n=20) or partially (n=19), whereas the rest of them (47.3%) conducted clinical practicums at school or home via online teaching. The typical teaching methods for offline or online education were case conferences, tests or quizzes, scenario studies, nursing skill practicums, (virtual) nursing simulations, and simulated patient education. Most of faculties (93.2%) supported the development of an educational platform to share educational materials and resources, such as case scenarios. Conclusion: Nursing faculty members utilized various teaching methods to enhance clinical skills and mitigate limited clinical exposure during the early stage of the COVID-19 pandemic. The KSWHN should move forward to develop an education platform and modalities for members who face many challenges related to the accessibility and quality of nursing education contents.

Impact Analysis of Communication Time Delay and Properties of a Haptic Device on Stability Boundary for a Haptic System with a First-Order Hold (일차홀드 방식을 포함한 햅틱 시스템의 안정성 영역에 대한 통신시간지연과 햅틱장치 물성치의 영향 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.572-578
    • /
    • 2017
  • Haptic systems help users feel a realistic sensation when they manipulate virtual objects in the remote virtual environment. However, there are communication time delays that may make the haptic system unstable. This paper shows the relationship between communication time delay, properties of a haptic device, and the stability of the haptic system with the first-order hold method in a simulation. The maximum available stiffness of a virtual spring with the first-order hold method is larger than in the zero-order hold method when there is no time delay. However, when the communication time delay is much larger than the sampling time, the maximum available stiffness to guarantee the stability becomes the same, irrespective of the sample-hold methods. Besides, the maximum available stiffness increases in inverse proportion to the communication time delay and in proportional to the damping coefficient of the haptic device.

Evaluation of Electronic Pedal in Commercial Vehicles using Physiology Analysis of Electromyography (근전도 생리 분석을 이용한 상용차용 전자페달의 평가)

  • Kim, Jae-Jun;Kim, Kyung;Shin, Sun-Hye;Yu, Chang-Ho;Jeong, Gu-Young;Oh, Seung-Yong;Kwon, Tae-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1434-1440
    • /
    • 2011
  • In this paper, we assessed muscular activities of lower limbs and foot pressure for car and bus drivers according to operating three electronic pedals that we developed. To analyze drivers' physical exhaustion, muscular fatigue of lower limbs was evaluated. Eleven car drivers and six urban bus drivers were participated in this experiment. The virtual driving system was used for the real driving environment. The virtual driving system was comprised of a spring seat, a steering wheel, pedals (clutch, excel and brake pedals), a manual transmission and a virtual driving simulation. For the real vibration like situation on the road, six degree of freedom motion base system was used. Measured muscles were rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA) and gastrocnemius (Gn) muscles. For the quantitative muscular activities, integrated electromyography (IEMG) was analyzed. Muscular fatigues also were analyzed through the analysis of the median frequency. In addition, foot pressures were analyzed and compared through the peak and averaged pressure during the operating three developed electronic pedals. The experiments are conducted with total 17 drivers, 11 general public and 6 drivers. As a result of the analysis, electromyogram and fatigue analysis through intermediate frequency reduction for pedal-1 more efficient than other pedals. And foot pressure also was decreased. Consequently, we suggested the most efficient pedal and method to minimize the amount of cumulative fatigue.

An Evolutionary Optimization Approach for Optimal Hopping of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2420-2426
    • /
    • 2015
  • This paper proposes an evolutionary optimization approach for optimal hopping of humanoid robots. In the proposed approach, the hopping trajectory is generated by a central pattern generator (CPG). The CPG is one of the biologically inspired approaches, and it generates rhythmic signals by using neural oscillators. During the hopping motion, the disturbance caused by the ground reaction forces is compensated for by utilizing the sensory feedback in the CPG. Posture control is essential for a stable hopping motion. A posture controller is utilized to maintain the balance of the humanoid robot while hopping. In addition, a compliance controller using a virtual spring-damper model is applied for stable landing. For optimal hopping, the optimization of the hopping motion is formulated as a minimization problem with equality constraints. To solve this problem, two-phase evolutionary programming is employed. The proposed approach is verified through computer simulations using a simulated model of the small-sized humanoid robot platform DARwIn-OP.

Influence of Pile Cap's Boundary Conditions in Piled Pier Structures (교량 말뚝기초의 단부 지점조건의 영향분석)

  • Jeong, Sang-Seom;Won, Jin-Oh
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.25-32
    • /
    • 2005
  • Modeling techniques of piled pier were reviewed and the influences of pile cap's boundary conditions were analyzed in this study. Among various modeling techniques, equivalent cantilever method seems relatively simple for modeling pile groups and it has some problems to determine the virtual fixed points. Through the analyses, it was found that the method of nonlinear p-y model with soil springs was more appropriate than equivalent cantilever method. The method modeling a pile group using stiffness matrix seems useful for practical design, which can represent the nonlinear three-dimensional behavior of a piled pier. In this study, the stiffness matrix of a pile group could be estimated efficiently and precisely using three-dimensional nonlinear analysis programs of pile groups (FBPier 3.0, YSGroup).

  • PDF

Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory

  • Baseri, Vahid;Jafari, Gholamreza Soleimani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.883-919
    • /
    • 2016
  • In this research, buckling analysis of an embedded laminated composite plate is investigated. The elastic medium is simulated with spring constant of Winkler medium and shear layer. With considering higher order shear deformation theory (Reddy), the total potential energy of structure is calculated. Using Principle of Virtual Work, the constitutive equations are obtained. The analytical solution is performed in order to obtain the buckling loads. A detailed parametric study is conducted to elucidate the influences of the layer numbers, orientation angle of layers, geometrical parameters, elastic medium and type of load on the buckling load of the system. Results depict that the highest buckling load is related to the structure with angle-ply orientation type and with increasing the angle up to 45 degrees, the buckling load increases.

Study on a Override Behavior during Train Collision by Crush Characteristic of Train Carbody (차체의 압괴특성에 의한 충돌 후 타고오름 거동에 관한 연구)

  • Kim, Geo-Young;Koo, Jung-Seo;Park, Min-Young
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.604-608
    • /
    • 2010
  • This paper proposed a new 2D multibody dynamic modeling technique to analyze overriding behavior taking place during train collision. This dynamic model is composed of nonlinear spring, damper and mass by considering the deformable characteristics of carbodies as well as energy absorbing structures and components. By solving this dynamic model of rollingstock, collision energy absorption capacity, acceleration of passenger sections, impact forces applied to interconnecting devices, and overriding displacements can be well estimated. For a case study, we choose KHST (Korean High Speed Train), obtained crush characteristic data of each carbody section from 3D finite element analysis, and established a 2D multibody dynamic model. This 2D dynamic model was suggested to describe the collision behavior of 3D Virtual Testing Model.

  • PDF

Stability Analyses of Magnetic Levitation Tables Using Repulsions of Permanent Magnets (영구자석에 의한 반발형 자기부상 테이블의 안정성 해석)

  • Choe, Gi-Bong;Jo, Yeong-Geun;Tadahiko Shinshi;Akira Shimokohbe
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.36-42
    • /
    • 2002
  • This paper presents two actuators for levitation using repulsions of permanent magnet and two magnetic levitation tables using the actuators. Here, one actuator for levitation consists of one fixed magnet and one moving magnet, and the other actuator consists of two fixed magnets and one moving magnet. The moving part of the magnetic levitation table contains the moving magnets. repulsive forces caused by the permanent magnets are linearized, and then the equation of motion of the moving part of the table is derived. Using the equation of motion, stability conditions of the moving part are deduced. The stability conditions are analyzed for positional relations of the moving magnets and the minimum number of active control required for stable system. As a result, in the each case of magnetic levitation tables, the requirements for stabilization are expressed by the positional relations and the number of the active controls.

Development of Compliance Emulator System (콤플라이언스 에뮬레이터 시스템의 개발)

  • Park, Chan-Won;Shin, Young-kyun
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.351-359
    • /
    • 1999
  • If the tactile sense is introduced to engineering and industries, it may provide more realistic virtual tactile sensing to human and it is possible to develop product that satisfy various consumer's taste. This paper presents a compliance emulator system as a new concept of tactile reproduction simulator which uses magnetic levitation in order to minimize friction and emulates compliance only along the vertical direction. Compliance is one of the important mechanical properties of the object related to tactile sensing of the human. The implemented system equipped with an analog LVDT sensor for a position sensor and employs a PD control with gravity compensation to emulate the specified compliance. To compensate the limited range of the system, the method of attaching the spring with various magnitude of stiffness to the system is adopted and its preliminary test is performed to confirm the validity of the method.

  • PDF

An Experiment Study of Semi-Active Damper Using Magnetic fluid (자성유체를 이용한 반능동식 댐퍼에 관한 실험적 연구)

  • Hwang, Seung-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.24-31
    • /
    • 2004
  • The aim of this study is to provide fundamental information for the development of Semi-Active Damper Using Magnetic fluid. To achieve the aim, the damping effect of magnetic fluid is investigated by experiments that the diameter of inner circular bar and the input amplitude were varied in the magnetic field generated by the permanent magnet and the electromagnet coil. From the study, the following conclusive remarks can be made. As the diameter of inner circular bar and input amplitude increase, the damping effect is improved. This is explained by the fact that as the contact area between inner circular bar and magnetic fluid increases, the increase of friction lowers kinematic energy. If the magnetic field is generated, the damping effect is improved. This is explained the assumption that as the intensity of magnetic fluid particle increases, there is virtual mass phenomenon.