• Title/Summary/Keyword: Virtual sensor

Search Result 482, Processing Time 0.025 seconds

Survey for U-Greenhouse System Technology (U-온실 시스템 기술에 대한 분석)

  • Park, Sang-Oh;Lee, Yang-Sun;Kim, Se-Han;Park, Ji-Soo;Yi, Ki-Jung;Park, Jong-Hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.89-95
    • /
    • 2012
  • This paper introduces domestic and international trends and researches related with U-Greenhouse systems. USN (Ubiquitous Sensor Networks), along with the development of networks as well as science and technology, is a new computing paradigm which is the convergence of user-oriented physical activity space and virtual space of electronics and computing and also provides services according to change in surrounding environment at anytime and anywhere. The U-Greenhouse system is to apply USN to agricultural production, logistics and distribution management which are relatively insufficient to utilize IT technology. Thus, applying u-IT technology to agriculture can reinforces international competitiveness of the agricultural sector through the effects such as cost cutting as a rise in output, logistics and distribution management.

Design of Location and User Status Awareness Service Architecture Based on Opportunistic Computing with Ad-hoc Nodes (Ad-hoc 통신 노드를 이용한 기회 컴퓨팅형 위치인식 및 상황인지 서비스 구조 설계)

  • Kim, Tae-Hyon;Jo, Hyeong-Gon;Jeong, Seol-Young;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1199-1210
    • /
    • 2010
  • In recent years opportunistic computing has gained popularity in Ad-hoc network research area and it is highly required to research for actual services and related requirements. In this paper we summarized a virtual opportunistic service that is named "Children Care System" and proposed an Ad-hoc communication node (uMobile) that is connected with cellular phone and a sensor node (uClo) which is embedding into clothes. uMobile can support cellular phone communication and Ad-hoc communication and uClo can be embedded into clothes and recognize the user status using multiple sensors. In this paper we implemented the location awareness and user status awareness services using uMobile and uClo. We also tested them in indoor situation and showed the result. We expect that our research can play a significant role to inspire another various opportunistic computing services.

Sink-Initiated Geographic Multicasting Protocol for Mobile Sinks in Wireless Sensor Networks (무선 센서 망에서 이동 싱크를 위한 위치기반 멀티캐스팅 프로토콜)

  • Lee, Jeong-Cheol;Park, Ho-Sung;Oh, Seung-Min;Jung, Ju-Hyun;Yim, Yong-Bin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.377-385
    • /
    • 2010
  • In this paper, we propose a SInk-initiated geographic Multicast (SIM) protocol to reduce frequent location updates from mobile sinks to a source and to achieve fast multicast tree construction and data delivery. The proposed protocol allows sinks to construct their own data delivery paths to a source node and a multicast tree to be atomically constructed by merging the paths. Then, the source forwards data to the destinations down the multicast tree. This paper also propose a round-based virtual infrastructure with a radial shape for increasing the merging probability of data delivery paths and reducing reconstruction ratio of the multicast tree due to mobility of sinks. Simulation results show that the proposed protocol is superior to previous SOurce-initiated geographic Multicast (SOM) protocols in term of average data delivery delay and average energy consumption.

Light-Weight Mobile VR Platform using HMD with 6 Axis (6 축센서를 갖는 HMD 경량 모바일 VR Platform)

  • Kang, Yunhee;Kang, JungJu
    • Journal of Platform Technology
    • /
    • v.6 no.2
    • /
    • pp.3-9
    • /
    • 2018
  • Recently VR environment is used in many areas including mobile learning, smart factory. However HMD(head-mounted display) is required to a dedicated and expensive system with high-end specification. When designing a VR system, it is needed to handle performance, mobility and usability. Many VR applications need to handle diverse sensors and user inputs continuously in a streaming manner. In this paper we design a VR mobile platform and implement a low-cost mobile VR HMD running on the platform. The VR HMD supports 3D contents delivery in a mobile manner. It is used to detect the motion detection based on angle value of a VR player from accelerator and gyro sensor. The MPU-6050, 6-axis sensor, is used to get a sensory value and the sensory value is taken as an input to a VR rendering server on a Unity game engine that is generated 3D images.

Effect of Design variables of Rail Surface Measuring Device on Acoustic Roughness and Spectral Analysis (레일표면 측정장치의 설계변수가 음향조도 스펙트럼 분석에 미치는 영향)

  • Jeong, Wootae;Jeon, Seungwoo;Jeong, Dahae;Choi, Han Shin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.440-447
    • /
    • 2017
  • Spectrum level for the acoustic roughness of wheels and rail surface should be periodically maintained under the limitation of ISO to reduce rolling noise of railway vehicles. Thus, in maintaining railway track, displacement sensor-based measuring devices are broadly used to measure the surface roughness and to perform spectral analysis. However, these measuring devices cause unexpected measuring errors since the displacement sensors are fixed at moving platforms and the main frame produces pitching motion during measurement. To increase the accuracy of the measured values, this paper has investigated the effects of design variables such as wheel base, additional wheels, and elastic deformation of wheels on the surface roughness and acoustic roughness spectrum.

Implementation of Middleware Security System for Home Networking (홈 네트워킹을 위한 미들웨어 보안시스템 구현)

  • Seol, Jeong-Hwan;Lee, Ki-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.863-869
    • /
    • 2008
  • In this paper, a system with sensor network security mechanism which can be applied to home network structure is designed and it is implemented on a virtual network of a home network middleware. The basic structure of home networking middleware supports one-to-one (unicast) or broadcast communication mode between the lookup server and service nodes on the network. Confidentiality and authentication are key security factors of the one-to-one communication and user authentication is crucial for broadcasting mode. One of the sensor network's security techniques SPINS consists of SNEP and ${\mu}TESLA$. The SNEP ensures confidentiality and authentication, and ${\mu}TESLA$ provides broadcast authentication. We propose a SPIN based home network middleware and it is implemented by using the CBC-MAC for MAC generation, the counter mode (CTR) for message freshness, the pseudo random function (PRF) and RC5 as encryption algorithm. The implementation result shows that an attacker cannot decrypt the message though he gets the secure key because of CTR mode. In addition, we confirmed that a received message of the server is authenticated using MAC.

Interactive ADAS development and verification framework based on 3D car simulator (3D 자동차 시뮬레이터 기반 상호작용형 ADAS 개발 및 검증 프레임워크)

  • Cho, Deun-Sol;Jung, Sei-Youl;Kim, Hyeong-Su;Lee, Seung-gi;Kim, Won-Tae
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.970-977
    • /
    • 2018
  • The autonomous vehicle is based on an advanced driver assistance system (ADAS) consisting of a sensor that collects information about the surrounding environment and a control module that determines the measured data. As interest in autonomous navigation technology grows recently, an easy development framework for ADAS beginners and learners is needed. However, existing development and verification methods are based on high performance vehicle simulator, which has drawbacks such as complexity of verification method and high cost. Also, most of the schemes do not provide the sensing data required by the ADAS directly from the simulator, which limits verification reliability. In this paper, we present an interactive ADAS development and verification framework using a 3D vehicle simulator that overcomes the problems of existing methods. ADAS with image recognition based artificial intelligence was implemented as a virtual sensor in a 3D car simulator, and autonomous driving verification was performed in real scenarios.

Development of pulse diagnosis possible simulator using the stepper motor pumps (스텝 모터 펌프를 이용한 맥진 가능한 시뮬레이터의 개발)

  • Ryu, Geun-Taek;Woo, Sung-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.915-918
    • /
    • 2016
  • Virtual testing devices are required due to rapid changes in the health care industry and the increase of the medical or nursing workforce. The importance of devices such as the simulator, blood vessels, and lab equipment for modeling blood flow to the heart is increasing too. In this study, we made heart pump by using a step motor and developed device which simulates arterial, venous blood pressure, and blood flow. We finally evaluated the function of proposed device. The proposed system is composed of the pump for simulating, the valve device to describe the resistance of the artery and vein, and a reducing device showing the characteristics of the venous system. We used BOXER pump for heart simulator and silicon tube for arterial and venous vessels, and designed a reducing device. We also used the pressure sensor to measure arterial blood pressure. For the evaluation of the proposed system, we selected a range of 50~100mmHg of the blood circuit 60 per minute and then compared the blood pressure of a person and the measured blood pressure.

  • PDF

AI-based smart water environment management service platform development (AI기반 스마트 수질환경관리 서비스 플랫폼 개발)

  • Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.56-63
    • /
    • 2022
  • Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.

Development of a Fault Detection Algorithm for Multi-Autonomous Driving Perception Sensors Based on FIR Filters (FIR 필터 기반 다중 자율주행 인지 센서 결함 감지 알고리즘 개발)

  • Jae-lee Kim;Man-bok Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.175-189
    • /
    • 2023
  • Fault detection and diagnosis (FDI) algorithms are actively being researched for ensuring the integrity and reliability of environment perception sensors in autonomous vehicles. In this paper, a fault detection algorithm based on a multi-sensor perception system composed of radar, camera, and lidar is proposed to guarantee the safety of an autonomous vehicle's perception system. The algorithm utilizes reference generation filters and residual generation filters based on finite impulse response (FIR) filter estimates. By analyzing the residuals generated from the filtered sensor observations and the estimated state errors of individual objects, the algorithm detects faults in the environment perception sensors. The proposed algorithm was evaluated by comparing its performance with a Kalman filter-based algorithm through numerical simulations in a virtual environment. This research could help to ensure the safety and reliability of autonomous vehicles and to enhance the integrity of their environment perception sensors.