• Title/Summary/Keyword: Virtual resource allocation

Search Result 75, Processing Time 0.023 seconds

Network function virtualization (NFV) resource allocation (RA) scheme and research trend (네트워크기능 가상화 (NFV) 자원할당 (RA) 방식과 연구동향)

  • Kim, Hyuncheol;Yoon, Seunghyun;Jeon, Hongseok;Lee, Wonhyuk
    • Convergence Security Journal
    • /
    • v.16 no.7
    • /
    • pp.159-165
    • /
    • 2016
  • Through the NFV (Network Function Virtualization), companies such as network service providers and carriers have sought to dramatically reduce CAPEX / OPEX by improving the speed of new service provisioning and flexibility of network construction through the S/W-based devices provided by NFV. One of the most important considerations for establishing an NFV network to provide dynamic services is to determine how to dynamically allocate resources (VNFs), the basic building blocks of network services, in the right place. In this paper, we analyzed the latest research trends on VNF node, link allocation, and scheduling in nodes that are required to provide arbitrary NS in NFV framework. In this paper, we also propose VNF scheduling problems that should be studied further in RA (Resource Allocation).

A Secure and Efficient Cloud Resource Allocation Scheme with Trust Evaluation Mechanism Based on Combinatorial Double Auction

  • Xia, Yunhao;Hong, Hanshu;Lin, Guofeng;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4197-4219
    • /
    • 2017
  • Cloud computing is a new service to provide dynamic, scalable virtual resource services via the Internet. Cloud market is available to multiple cloud computing resource providers and users communicate with each other and participate in market transactions. However, since cloud computing is facing with more and more security issues, how to complete the allocation process effectively and securely become a problem urgently to be solved. In this paper, we firstly analyze the cloud resource allocation problem and propose a mathematic model based on combinatorial double auction. Secondly, we introduce a trust evaluation mechanism into our model and combine genetic algorithm with simulated annealing algorithm to increase the efficiency and security of cloud service. Finally, by doing the overall simulation, we prove that our model is highly effective in the allocation of cloud resources.

Price-based Resource Allocation for Virtualized Cognitive Radio Networks

  • Li, Qun;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4748-4765
    • /
    • 2016
  • We consider a virtualized cognitive radio (CR) network, where multiple virtual network operators (VNOs) who own different virtual cognitive base stations (VCBSs) share the same physical CBS (PCBS) which is owned by an infrastructure provider (InP), sharing the spectrum with the primary user (PU). The uplink scenario is considered where the secondary users (SUs) transmit to the VCBSs. The PU is protected by constraining the interference power from the SUs. Such constraint is applied by the InP through pricing the interference. A Stackelberg game is formulated to jointly maximize the revenue of the InP and the individual utilities of the VNOs, and then the Stackelberg equilibrium is investigated. Specifically, the optimal interference price and channel allocation for the VNOs to maximize the revenue of the InP and the optimal power allocation for the SUs to maximize the individual utilities of the VNOs are derived. In addition, a low‐complexity ±‐optimal solution is also proposed for obtaining the interference price and channel allocation for the VNOs. Simulations are provided to verify the proposed strategies. It is shown that the proposed strategies are effective in resource allocation and the ±‐optimal strategy achieves practically the same performance as the optimal strategy can achieve. It is also shown that the InP will not benefit from a large interference power limit, and selecting VNOs with higher unit rate utility gain to share the resources of the InP is beneficial to both the InP and the VNOs.

Energy and Service Level Agreement Aware Resource Allocation Heuristics for Cloud Data Centers

  • Sutha, K.;Nawaz, G.M.Kadhar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5357-5381
    • /
    • 2018
  • Cloud computing offers a wide range of on-demand resources over the internet. Utility-based resource allocation in cloud data centers significantly increases the number of cloud users. Heavy usage of cloud data center encounters many problems such as sacrificing system performance, increasing operational cost and high-energy consumption. Therefore, the result of the system damages the environment extremely due to heavy carbon (CO2) emission. However, dynamic allocation of energy-efficient resources in cloud data centers overcomes these problems. In this paper, we have proposed Energy and Service Level Agreement (SLA) Aware Resource Allocation Heuristic Algorithms. These algorithms are essential for reducing power consumption and SLA violation without diminishing the performance and Quality-of-Service (QoS) in cloud data centers. Our proposed model is organized as follows: a) SLA violation detection model is used to prevent Virtual Machines (VMs) from overloaded and underloaded host usage; b) for reducing power consumption of VMs, we have introduced Enhanced minPower and maxUtilization (EMPMU) VM migration policy; and c) efficient utilization of cloud resources and VM placement are achieved using SLA-aware Modified Best Fit Decreasing (MBFD) algorithm. We have validated our test results using CloudSim toolkit 3.0.3. Finally, experimental results have shown better resource utilization, reduced energy consumption and SLA violation in heterogeneous dynamic cloud environment.

A Priority Allocation Scheme Considering Virtual Machine Scheduling Delays in Xen Environments (Xen 환경에서 스케줄링 지연을 고려한 가상머신 우선순위 할당 기법)

  • Yang, Eun-Ji;Choi, Hyun-Sik;Han, Sae-Young;Park, Sung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.4
    • /
    • pp.246-255
    • /
    • 2010
  • There exist virtual machine scheduling delays in virtualized environment in which virtual machines share physical resources. Many resource management systems have been proposed to provide better application QoS through monitoring and analyzing application performance and resource utilization of virtual machines. However, those management systems don't consider virtual machine scheduling delays, result in incorrect application performance evaluation and QoS violations In this paper, we propose an application behavior analysis considering the scheduling delays, and a virtual machine priority allocation scheme based on the analysis to improve the application response time by minimizing the overall virtual machine scheduling delays.

Dynamic Resource Allocation and Scheduling for Cloud-Based Virtual Content Delivery Networks

  • Um, Tai-Won;Lee, Hyunwoo;Ryu, Won;Choi, Jun Kyun
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.197-205
    • /
    • 2014
  • This paper proposes a novel framework for virtual content delivery networks (CDNs) based on cloud computing. The proposed framework aims to provide multimedia content delivery services customized for content providers by sharing virtual machines (VMs) in the Infrastructure-as-a-Service cloud, while fulfilling the service level agreement. Furthermore, it supports elastic virtual CDN services, which enables the capabilities of VMs to be scaled to encompass the dynamically changing resource demand of the aggregated virtual CDN services. For this, we provide the system architecture and relevant operations for the virtual CDNs and evaluate the performance based on a simulation.

A Virtual Machine Allocation Scheme based on CPU Utilization in Cloud Computing (클라우드 컴퓨팅에서 CPU 사용률을 고려한 가상머신 할당 기법)

  • Bae, Jun-Sung;Lee, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.567-575
    • /
    • 2011
  • The two most popular virtual machine allocation schemes, both match making and round robin, do consider hardware specifications such as CPU, RAM, and HDD, but not CPU usage, which results in balanced resource distribution, but not in balanced resource usage. Thus, in this paper a new virtual machine allocation scheme considering current CPU usage rate is proposed while retaining even distribution of node resources. In order to evaluate the performance of the proposed scheme, a cloud computing platform composed of three cloud nodes and one front end is implemented. The proposed allocation scheme was compared with both match making and round robin schemes. Experimental results show that the proposed scheme performs better in even distribution of overall CPU usage, which results in efficient load balancing.

Design and Implementation of Parking Guidance System Based on Internet of Things(IoT) Using Q-learning Model (Q-learning 모델을 이용한 IoT 기반 주차유도 시스템의 설계 및 구현)

  • Ji, Yong-Joo;Choi, Hak-Hui;Kim, Dong-Seong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.153-162
    • /
    • 2016
  • This paper proposes an optimal dynamic resource allocation method in IoT (Internet of Things) parking guidance system using Q-learning resource allocation model. In the proposed method, a resource allocation using a forecasting model based on Q-learning is employed for optimal utilization of parking guidance system. To demonstrate efficiency and availability of the proposed method, it is verified by computer simulation and practical testbed. Through simulation results, this paper proves that the proposed method can enhance total throughput, decrease penalty fee issued by SLA (Service Level Agreement) and reduce response time with the dynamic number of users.

Dynamic Fog-Cloud Task Allocation Strategy for Smart City Applications

  • Salim, Mikail Mohammed;Kang, Jungho;Park, Jong Hyuk
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.128-130
    • /
    • 2021
  • Smart cities collect data from thousands of IoT-based sensor devices for intelligent application-based services. Centralized cloud servers support application tasks with higher computation resources but introduce network latency. Fog layer-based data centers bring data processing at the edge, but fewer available computation resources and poor task allocation strategy prevent real-time data analysis. In this paper, tasks generated from devices are distributed as high resource and low resource intensity tasks. The novelty of this research lies in deploying a virtual node assigned to each cluster of IoT sensor machines serving a joint application. The node allocates tasks based on the task intensity to either cloud-computing or fog computing resources. The proposed Task Allocation Strategy provides seamless allocation of jobs based on process requirements.

An Adaptive Virtual Machine Location Selection Mechanism in Distributed Cloud

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4776-4798
    • /
    • 2015
  • The location selection of virtual machines in distributed cloud is difficult because of the physical resource distribution, allocation of multi-dimensional resources, and resource unit cost. In this study, we propose a multi-object virtual machine location selection algorithm (MOVMLSA) based on group information, doubly linked list structure and genetic algorithm. On the basis of the collaboration of multi-dimensional resources, a fitness function is designed using fuzzy logic control parameters, which can be used to optimize search space solutions. In the location selection process, an orderly information code based on group and resource information can be generated by adopting the memory mechanism of biological immune systems. This approach, along with the dominant elite strategy, enables the updating of the population. The tournament selection method is used to optimize the operator mechanisms of the single-point crossover and X-point mutation during the population selection. Such a method can be used to obtain an optimal solution for the rapid location selection of virtual machines. Experimental results show that the proposed algorithm is effective in reducing the number of used physical machines and in improving the resource utilization of physical machines. The algorithm improves the utilization degree of multi-dimensional resource synergy and reduces the comprehensive unit cost of resources.