• Title/Summary/Keyword: Virtual phantom

Search Result 56, Processing Time 0.017 seconds

The Application of Chamfer Matching Algorithm to the Error Analysis of a Treatment Field between a Simulation Image and a Portal Image (챔퍼 매칭(Chamfer Matching) 알고리즘을 활용한 모의치료 영상과 포탈(Portal) 영상의 비교, 분석)

  • 송주영;나병식;정웅기;안성자;남택근;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.189-195
    • /
    • 2003
  • The comparative analysis of a portal image and a simulation image is a very important process in radiotherapy for verifying the accuracy of an actual treatment field. In this study, we applied a chamfer-matching algorithm to compare a portal image with a simulation image and verified the accuracy of the algorithm to analyze the field matching error in the portal image. We also developed an analysis program that could analyze the two images more effectively with a chamfer-matching method and demonstrated its efficacy through a feasibility study. With virtual portal images, the accuracy of the analysis algorithm were acceptable considering the average error of shift (0.64 mm), rotation (0.32$^{\circ}$), and scale (1.61%). When the portal images of a head and neck phantom were analyzed, the accuracy and suitability of the developed analysis program was proven considering the acceptable average error of shift (1.55 mm), rotation (0.80$^{\circ}$), and scale (1.72%). We verified the applicability of a chamfer-matching algorithm to the comparative analysis of a portal image with a simulation image. The analysis program developed in this study was a practical tool to calculate the quantitative error of the treatment field in a portal image.

  • PDF

Measurement and Analysis of Pediatric Patient Exposure Dose Using Glass dosimeter and a PC-Based Monte Carlo Program (Glass dosimeter와 PCXMC Program을 이용한 소아피폭선량 측정 및 분석)

  • Kim, Young-Eun;Lee, Jeong-Hwa;Hong, Sun-Suk;Lee, Kwan-Seob
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.9-14
    • /
    • 2012
  • Exposed dose of young child should be managed necessarily. Young child is more sensitive than adult of a Radioactivity, especially, and lives longer than adult. Must reduce exposed dose which follows The ALARA(As Low As Reasonably Achievable)rule is recommended by ICRP(International Commission on Radiological Protection)within diagnostic useful range. Therefore, We have to prepare Pediatric DRL(Diagnostic Reference Level) in Korea as soon as possible. Consequently, in this study, wish to estimate organ dose and effective dose using PCXMC Program(a PC-Based Monte Carlo Program), and measure ESD(Entrance surface dose)and organ dose using Glass dosimeter, and then compare with DRL which follows EC(European Commission)and NRPB(National Radiological Protection Board). Using glass dosimeter and PCXMC programs conforming to the International Committee for Radioactivity Prevention(ICRP)-103 tissue weighting factor based on the item before the organs contained in the Chest, Skull, Pelvis, Abdomen in the organ doses and effective dose and dose measurements were evaluated convenience. In a straightforward way to RANDO phantom inserted glass dosimeter(GD352M)by using the hospital pediatric protocol, and in a indirect way was PCXMC the program through a virtual simulation of organ doses and effective dose were calculated. The ESD in Chest PA is 0.076mGy which is slightly higher than the DRL of NRPB(UK) is 0.07mGy, and is lower than the DRL of EC(Europe) which is 0.1mGy. The ESD in Chest Lateral is 0.130mGy which is lower than the DRL of EC(Europe) is 0.2mGy. The ESD in Skull PA is 0.423mGy which is 40 percent lower than the DRL of NRPB(UK) is 1.1mGy and is 28 percent lower than the DRL of EC(Europe) is 1.5mGy. The ESD in Skull Lateral is 0.478mGy which is half than the DRL of NRPB(UK) is 0.8mGy, is 40 percent lower than the DRL of EC(Europe) is 1mGy. The ESD in Pelvis AP is 0.293mGy which is half than the DRL of NRPB(UK) is 0.60mGy, is 30 percent lower than the DRL of EC(Europe)is 0.9mGy. Finally, the ESD in Abdomen AP is 0.223mGy which is half than the DRL of NRPB(UK) is 0.5mGy, and is 20 percent lower than the DRL of EC is 1.0mGy. The six kind of diagnostic radiological examination is generally lower than the DRL of NRPB(UK)and EC(Europe) except for Chest PA. Shouldn't overlook the age, body, other factors. Radiological technician must realize organ dose, effective dose, ESD when examining young child in hospital. That's why young child is more sensitive than adult of a Radioactivity.

  • PDF

Monte Carlo Algorithm-Based Dosimetric Comparison between Commissioning Beam Data across Two Elekta Linear Accelerators with AgilityTM MLC System

  • Geum Bong Yu;Chang Heon Choi;Jung-in Kim;Jin Dong Cho;Euntaek Yoon;Hyung Jin Choun;Jihye Choi;Soyeon Kim;Yongsik Kim;Do Hoon Oh;Hwajung Lee;Lee Yoo;Minsoo Chun
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.150-157
    • /
    • 2022
  • Purpose: Elekta synergy® was commissioned in the Seoul National University Veterinary Medical Teaching Hospital. Recently, Chung-Ang University Gwang Myeong Hospital commissioned Elekta Versa HDTM. The beam characteristics of both machines are similar because of the same AgilityTM MLC Model. We compared measured beam data calculated using the Elekta treatment planning system, Monaco®, for each institute. Methods: Beam of the commissioning Elekta linear accelerator were measured in two independent institutes. After installing the beam model based on the measured beam data into the Monaco®, Monte Carlo (MC) simulation data were generated, mimicking the beam data in a virtual water phantom. Measured beam data were compared with the calculated data, and their similarity was quantitatively evaluated by the gamma analysis. Results: We compared the percent depth dose (PDD) and off-axis profiles of 6 MV photon and 6 MeV electron beams with MC calculation. With a 3%/3 mm gamma criterion, the photon PDD and profiles showed 100% gamma passing rates except for one inplane profile at 10 cm depth from VMTH. Gamma analysis of the measured photon beam off-axis profiles between the two institutes showed 100% agreement. The electron beams also indicated 100% agreement in PDD distributions. However, the gamma passing rates of the off-axis profiles were 91%-100% with a 3%/3 mm gamma criterion. Conclusions: The beam and their comparison with MC calculation for each institute showed good performance. Although the measuring tools were orthogonal, no significant difference was found.

Effect of an Acrylic Plate and SSD on Dose Profile and Depth Dose Distribution of 9 MeV Electron Beams (에너지 저하체로서 아크릴과 SSD 가 9MeV 전자선의 측방 및 깊이선량분포에 미치는 효과)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.65-71
    • /
    • 1998
  • The aims are to evaluate the effects of an 1.0 cm acrylic plate and SSD on the dose profile and depth dose distribution of 9 MeV electron beam and to analyse adequacy for using an acrylic plate to reduce energy of electron beams. An acrylic plate of 1.0 cm thickness was used to reduce energy of 9 MeV electron beam to 7 MeV. The plate was put on an electron applicator at 65.4 cm distance from x-ray target. The size of the applicator was 10${\times}$l0cm at 100 cm SSD. For 100cm, l05cm and 110cm SSD, depth dose on beam axis and dose profiles at d$\_$max/ on two principal axes were measured using a 3D water phantom. From depth dose distributions, d$\_$max/, d$\_$85/, d$\_$50/ and R$\_$p/, surface dose, and mean energy and peak energy at surface were compared. From dose profiles flatness, penumbra width and actual field size were compared. For comparison, 9 MeV electron beams were measured. Surface dose of 7 MeV electron beams was changed from 85.5% to 82.2% increasing SSD from 100 cm to 110 cm, and except for dose buildup region, depth dose distributions were independent of SSD. Flatness of 7 MeV ranged from 4.7% to 10.4% increasing SSD, comparing 1.4% to 3.5% for 9 MeV. Penumbra width of 7 MeV ranged from 1.52 cm to 3.03 cm, comparing 1.14 cm to 1.63 cm for 9 MeV. Actual field size increased from 10.75 cm to 12.85 cm with SSD, comparing 10.32 cm to 11.46 cm for 9 MeV. Virtual SSD's of 7 and 9 MeV were respectively 49.8 cm and 88.5cm. In using energy reducer in electron therapy, depth dose distribution were independent of SSD except for buildup region as well as open field. In case of using energy reducer, increasing SSD made flatness to deteriorate more severely, penumbra width more wide, field size to increase more rapidly and virtual SSD more short comparing with original electron beam. In conclusion, it is desirable to use no energy reducer for electron beam, especially for long SSD.

  • PDF

Evaluation of surface dose comparison by treatment equipment (치료 장비 별 표면 선량 비교평가)

  • Choi Eun Ha;Yoon Bo Reum;Park Byoung Suk;An Ye Chan;Park Myoung Hwan;Park Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.31-42
    • /
    • 2022
  • Purpose: This study measures and compares the surface dose values in the virtual target volume using Tomotherapy, Halcyon, and TrueBeam equipment using 6MV-Flattening Filter-Free(FFF) energy. Materials and Methods: CT scan was performed under three conditions of without bolus, 0.5 cm bolus, and 1 cm bolus using an IMRT phantom (IBA, Germany). The Planning Target Volume (PTV) was set at the virtual target depth, and the treatment plan was established at 200 cGy at a time. For surface dosimetry, the Gafchromic EBT3 film was placed in the same section as the treatment planning system and repeated measurements were performed 10 times and then analyzed. Result: As a result of measuring the surface dose for each equipment, without, 0.5 cm, 1 cm bolus is in this order, and the result of Tomotherapy is 115.2±2.0 cGy, 194.4±3.3 cGy, 200.7±2.9 cGy, The result in Halcyon was 104.7±3.0 cGy, 180.1±10.8 cGy, 187.0±10.1 cGy, and the result in TrueBeam was 92.4±3.2 cGy, 148.6±5.7 cGy, 155.8±6.1 cGy, In all three conditions, the same as the treatment planning system, Tomotherapy, Halcyon, TreuBeam was measured highly in that order. Conclusion: Higher surface doses were measured in Tomotherapy and Halcyon compared to TrueBeam equipment. If the characteristics of each equipment are considered according to the treatment site and treatment purpose, it is expected that the treatment efficiency of the patient will increase as well as the treatment satisfaction of the patient.

Development of Error Analysis Program for Phase-based Respiratory Gating Radiation Therapy (위상기반 호흡연동 방사선치료 시 오차 분석 프로그램 개발)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.136-143
    • /
    • 2006
  • The respiratory gating radiation therapy which Irradiates only in the stable respiratory period with analyzing the periodic motion of a reflective marker on the patient's abdomen has been applied to the precise radiation treatment in order to minimize the effect of organ motion induced by the respiration. This respiratory gating system establishes irradiation region using the amplitude-based or phase-based method. Although phase-based method Is preferred because of the stability in the real treatment conditions, it has some limits to explain the exact correlation between the marker motion and organ motion. Even when the variation of amplitude which can introduce target motion considered as an error is produced, the phase-based method has the possibility to irradiate including the error positions. In this study, the error analysis program was developed for the verification of the tumor position's variation correlated with the variation of marker's amplitude which can be occurred during a phase-based respiratory sating treatment. The analysis program was tested with a virtual treatment record file and with a record file using moving phantom which were modified considering the irregular amplitude's variation simulating the real clinical situations. In both cases, accurate discrimination of error points and error calculation were produced. When the treatment record files of a real patient were analyzed with the program, the accurate recognition and calculation of the error points were also verified. The analysis program developed in this study will be applied as a useful tool for the analysis of errors due to the irregular variation of patients' respiration during the phase-base respiratory gating radiation treatment.

  • PDF