• Title/Summary/Keyword: Virtual instrumentation system

Search Result 31, Processing Time 0.026 seconds

The Implementation Methodology of Client-Server Architecture for Distributed Measurement System (분산 계측 시스템을 위한 클라이언-서버 아키텍쳐 구현 방안)

  • Song, Min-Gyu;Byun, Do-Young;Je, Do-Heung;Kim, Kwang-Dong;Roh, Duk-Gyoo;Oh, Se-Jin;Lee, Bo-Ahn
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.441-443
    • /
    • 2004
  • With the rapid development of the Internet over the recent years, in conjunction with the transmission protocol TCP/IP and the latest version of hypertext(HTML) facilities, new opportunities have come into existence for the use of the network for the remote control of experiments and the other practical systems in engineering education. Using graphical software environments in client-server systems, remote control and monitoring system can be easily designed. Client-server systems have some general advantages when compared with simple Remote-Access Systems. In this paper we present a client-server architecture for the distributed measurement system of instrumentation over the Internet. The proposed solution allows multi-user, multi-instruments sessions to be obtained by means of a queuing process and provides instrument lock capability. Client applications can be easily developed by using conventional high-level programming languages or well-assessed virtual instrumentation frameworks.

  • PDF

Kernel-level Software instrumentation via Light-weight Dynamic Binary Translation (경량 동적 코드 변환을 이용한 커널 수준 소프트웨어 계측에 관한 연구)

  • Lee, Dong-Woo;Kim, Jee-Hong;Eom, Young-Ik
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.63-72
    • /
    • 2011
  • Binary translation is a kind of the emulation method which converts a binary code compiled on the particular instruction set architecture to the new binary code that can be run on another one. It has been mostly used for migrating legacy systems to new architecture. In recent, binary translation is used for instrumenting programs without modifying source code, because it enables inserting additional codes dynamically, For general application, there already exists some instrumentation software using binary translation, such as dynamic binary analyzers and virtual machine monitors. On the other hand, in order to be benefited from binary translation in kernel-level, a few issues, which include system performance, memory management, privileged instructions, and synchronization, should be treated. These matters are derived from the structure of the kernel, and the difference between the kernel and user-level application. In this paper, we present a scheme to apply binary translation and dynamic instrumentation on kernel. We implement it on Linux kernel and demonstrate that kernel-level binary translation adds an insignificant overhead to performance of the system.

Active Damping of LCL Filter for Three-phase PWM Inverter without Additional Hardware Sensors (추가적인 센서가 필요 없는 3상 PWM 인버터의 LCL 필터 능동댐핑)

  • An, Byoung-Woong;Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Han, Byoung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • In this paper, a new active damping method of LCL filter without capacitor voltage sensors is proposed for 3 phase PWM Inverter. Normally, L filter or LCL filter is used as an output filter of grid connected PWM inverter. An LCL filter has more excellent performance than L filter to reduce harmonic current, so the small inductance value can be used. However, the resonance problem in LCL filter is happen due to the zero impedance by the addition of LC branch. To solve the resonance problem, the various active damping method has been proposed so far. Generally, the virtual resistor active damping methods is required to additional hardware sensors for measurement of capacitor voltage and current. In this paper, the new active damping method is proposed without any capacitor voltage or current sensors. In the proposed method, the resonance component of the capacitor voltage of LCL filter can be observed by a simple MRAS(Model Reference Adaptive System) observer without additional hardware sensors, and this component is suppressed by feedforward compensation. The validity of the proposed method is proven by simulation and experiment on the 3-phase PWM inverter system.

Control Characteristics Monitoring of Linear Induction Motor with Cage-type Secondary (농형 2차측을 갖는 선형 유도전동기의 제어 특성 모니터링)

  • Kim, Kyung-Min;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1098-1100
    • /
    • 2005
  • This paper presents a position control system for a linear induction motor(LIM) with cage-type secondary using direct thrust control(DTC). Also it presents a virtual instrumentation(VI) system for LIMs performance monitoring. The VI is designed using the graphical programming language LabVIEW and is capable of performing measurement functions, including data acquisition, display, and analyses at the same time. This paper reports the LIM's responses of the thrust, current, speed, and flux measured by the proposed monitoring system.

  • PDF

Positional correction of a 3D position-sensitive virtual Frisch-grid CZT detector for gamma spectroscopy and imaging based on a theoretical assumption

  • Younghak Kim ;Kichang Shin ;Aleksey Bolotnikov;Wonho Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1718-1733
    • /
    • 2023
  • The virtual Frisch-grid method for room-temperature radiation detectors has been widely used because of its simplicity and high performance. Recently, side electrodes were separately attached to each surface of the detectors instead of covering the entire detector surface with a single electrode. The side-electrode structure enables the measurement of the three-dimensional (3D) gamma-ray interaction in the detector. The positional information of the interaction can then be utilized to precisely calibrate the response of the detector for gamma-ray spectroscopy and imaging. In this study, we developed a 3D position-sensitive 5 × 5 × 12 mm3 cadmium-zinc-telluride (CZT) detector and applied a flattening method to correct detector responses. Collimated gamma-rays incident on the surface of the detector were scanned to evaluate the positional accuracy of the detection system. Positional distributions of the radiation interactions with the detector were imaged for quantitative and qualitative evaluation. The energy spectra of various radioisotopes were measured and improved by the detector response calibration according to the calculated positional information. The energy spectra ranged from 59.5 keV (emitted by 241Am) to 1332 keV (emitted by 60Co). The best energy resolution was 1.06% at 662 keV when the CZT detector was voxelized to 20 × 20 × 10.

Stator winding faults diagnosis system of induction motor using LabVIEW (LabVIEW를 이용한 유도전동기 고정자 권선 고장진단시스템)

  • Song, Myung-Hyun;Park, Kyu-Nam;Lee, Tae-Hun;Han, Dong-Gi;Park, Kyung-Han
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2658-2660
    • /
    • 2005
  • This paper presents a stator winding fault diagnosis technique of induction motor on the PC - based virtual instrumentation system designed using the graphical programming language LabVIEW. This method collects the 3-phase current signals using the current probe amplifier and PXI/DAQ system then the preprocessing removes the noise using LPF, after then this method transforms the stator current to Park's vector and obtains the each Park's Vector pattern and detects stator winding fault by comparing the obtained faulted pattern with the healthy pattern. This proposed LabVIEW based diagnosis system is applied to the 3 phase 1 hp induction motor and obtained the reasonable results under no load condition. The test results give us the possibility a simple and realistic on-line winding fault diagnosis system.

  • PDF

Development of 3D Terrain Visualization for Navigation Simulation using a Unity 3D Development Tool

  • Shin, Il-Sik;Beirami, Mohammadamin;Cho, Seok-Je;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.570-576
    • /
    • 2015
  • 3D visualization of navigation simulation is to visualize the environment conditions (e.g. nearby ships, dynamic characteristics, environment, terrain, etc) for any users on ships at sea. Realistic 3D visualization enables the users to be immersed to it and guarantees the reliability of the simulation. In particular, terrain visualization contains many virtual objects, so it is time and cost-intensive for object modelling. This paper proposes a 3D terrain visualization method that can be realized in a short time and with low cost by using the Unity 3D development tool. The 3D terrain visualization system requires bathymetric and elevation terrains, and Aids to Navigations (AtoNs) to be realized. It also needs to include 3D visualization objects including bridges, buildings and port facilities for more accurate simulation. Bathymetric and AtoN elements are acquired from ENC, and the elevation element is acquired from SRTM v4.1 digital elevation chart database developed by NASA. Then, the bathymetric and elevation terrains are generated, and the satellite images are superposed by using this terrain information. The longitudinal and latitudinal information of the AtoNs are converted to the 3-axis information to position the AtoN locations. The 3D objects such as bridges, buildings and port facilities are generated and the terrain visualization is completed. The proposed method realizes more realistic 3D terrain visualization of Busan Port.

THE STATUS AND IMPROVEMENT PLAN OF 1.8 m TELESCOPE CONTROL SYSTEM AT BOAO (보현산천문대 1.8 m 망원경 제어시스템 현황 및 개선방안)

  • Sung, Hyun-Il;Park, Yoon-Ho;Lee, Sang-Min;Lee, Byeong-Cheol;Seong, Hyeon-Cheol;Oh, Hyung-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.95-103
    • /
    • 2012
  • We analyzed the current status of the telescope control system (TCS2) of the 1.8 m telescope in Bohyunsan Optical Astronomy Observatory (BOAO), and suggest a new TCS (TCS3) for the long term development of BOAO. The TCS2 was constructed in 1998 to replace the TCS1 which was installed with the telescope itself at the commencement of BOAO. One of the important parts of TCS is PMAC (Programmable Multi-Axis Controller), which is a general-purpose multi-axis motion controller. PMAC provides the direct interactive communication environment permitting users to command the controller directly with simple operations. This makes the setup, debugging, and diagnostics very easy. The TCS2 was operated stable for a long time, but the hardware and TCS computers have been deteriorated and are out of date now. The new TCS3 needs to be constructed based on a modern computer system. And functions such as pre-calculations of telescope limiting position, interworking with virtual observatory tools, and using GUI, etc should be added. Construction of the TCS3 will be a step creating a better observation environment for the Korean astronomical society.

Comparative Study of AI Models for Reliability Function Estimation in NPP Digital I&C System Failure Prediction (원전 디지털 I&C 계통 고장예측을 위한 신뢰도 함수 추정 인공지능 모델 비교연구)

  • DaeYoung Lee;JeongHun Lee;SeungHyeok Yang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.1-10
    • /
    • 2023
  • The nuclear power plant(NPP)'s Instrumentation and Control(I&C) system periodically conducts integrity checks for the maintenance of self-diagnostic function during normal operation. Additionally, it performs functionality and performance checks during planned preventive maintenance periods. However, there is a need for technological development to diagnose failures and prevent accidents in advance. In this paper, we studied methods for estimating the reliability function by utilizing environmental data and self-diagnostic data of the I&C equipment. To obtain failure data, we assumed probability distributions for component features of the I&C equipment and generated virtual failure data. Using this failure data, we estimated the reliability function using representative artificial intelligence(AI) models used in survival analysis(DeepSurve, DeepHit). And we also estimated the reliability function through the Cox regression model of the traditional semi-parametric method. We confirmed the feasibility through the residual lifetime calculations based on environmental and diagnostic data.

Low Power TLB Supporting Multiple Page Sizes without Operation System (운영체제 도움 없이 멀티 페이지를 지원하는 저전력 TLB 구조)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.1-9
    • /
    • 2013
  • Even though the multiple pages TLB are effective in improving the performance, a conventional method with OS support cannot utilize multiple page sizes in user application. Thus, we propose a new multiple-TLB structure supporting multiple page sizes for high performance and low power consumption without any operating system support. The proposed TLB is organised as two parts of a S-TLB(Small TLB) with a small page size and a L-TLB(Large TLB) with a large page size. Both are designed as fully associative bank structures. The S-TLB stores small pages are evicted from the L-TLB, and the L-TLB stores large pages including a small page generated by the CPU. Each one bank module of S-TLB and L-TLB can be selectively accessed base on particular one and two bits of the virtual address generated from CPU, respectively. Energy savings are achieved by reducing the number of entries accessed at a time. Also, this paper proposed the simple 1-bit LRU policy to improve the performance. The proposed LRU policy can present recently referenced block by using an additional one bit of each entry on TLBs. This method can simply select a least recently used page from the L-TLB. According to the simulation results, the proposed TLB can reduce Energy * Delay by about 76%, 57%, and 6% compared with a fully associative TLB, a ARM TLB, and a Dual TLB, respectively.