• 제목/요약/키워드: Virtual control point

Search Result 132, Processing Time 0.048 seconds

Implementation of the Matching System between User-Centered Ubiquitous Virtual Reality and Real-World for Smart Home Control (스마트 홈 제어를 위한 사용자 중심의 유비쿼터스 가상현실과 실세계 정합시스템 구현)

  • Choi, Jae-Myeong;Lee, Hyun-Jik;Park, Ki-Hong;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.306-313
    • /
    • 2013
  • In this paper, we implemented the matching system between user-centered ubiquitous virtual reality and the real world for smart home control. Implemented system consists of the smart devices that are equipped with the ubiquitous virtual reality, the hardware for a real-world representation, and the matching software. To communication and data control, we designed the TCP/IP communication protocol, and used the WPAN-based 802.15.4 ZigBee module. The main point of proposed the authoring tool-based ubiquitous virtual reality is the user-centered environment that users can place the objects such as smart TV, home appliances similar to embellish their home structure. Some experiments are conducted so as to verify the proposed model, and as a results, the proposed matching system is well performed.

Synchronous Robot Simulator both on Virtual and Real Space for Quadruped Pet Robots (가상공간과 실공간의 동기화를 고려한 4족 애완 로봇 시뮬레이터 개발)

  • Kim, Hong-Seok;Yi, Soo-Yeong;Choi, Byoung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.75-82
    • /
    • 2010
  • In this paper, we developed a new MSRDS(Microsoft Robotics Developer Studio) simulator for a quadruped pet robot with synchronization of virtual and real robots. By using this simulator, it is possible to reduce time and cost for gait and motion design and it will help for commercialization of service pet robots. In the research point of view, the simulator can be used to examine the model differences between the virtual and the real robots. Since this simulator implements the coordinated control of the virtual and real robots, it can be used as an internet game using two remote pet robots.

Practical Study about Obstacle Detecting and Collision Avoidance Algorithm for Unmanned Vehicle

  • Park, Eun-Young;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.487-490
    • /
    • 2003
  • In this research, we will devise an obstacle avoidance algorithm for a previously unmanned vehicle. Whole systems consist mainly of the vehicle system and the control system. The two systems are separated; this system can communicate with the vehicle system and the control system through wireless RF (Radio Frequency) modules. These modules use wireless communication. And the vehicle system is operated on PIC Micro Controller. Obstacle avoidance method for unmanned vehicle is based on the Virtual Force Field (VFF) method. An obstacle exerts repulsive forces and the lane center point applies an attractive force to the unmanned vehicle. A resultant force vector, comprising of the sum of a target directed attractive force and repulsive forces from an obstacle, is calculated for a given unmanned vehicle position. With resultant force acting on the unmanned vehicle, the vehicle's new driving direction is calculated, the vehicle makes steering adjustments, and this algorithm is repeated.

  • PDF

Effectiveness of virtual reality immersion on procedure-related pain and anxiety in outpatient pain clinic: an exploratory randomized controlled trial

  • Joo, Young;Kim, Eun-Kyung;Song, Hyun-Gul;Jung, Haesun;Park, Hanssl;Moon, Jee Youn
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.304-314
    • /
    • 2021
  • Background: The study investigated virtual reality (VR) immersion in alleviating procedure-related pain in patients with chronic pain undergoing fluoroscopy-guided minimally-invasive intervention in a prone position at an outpatient clinic. Methods: In this prospective randomized controlled study, 38 patients undergoing lumbar sympathetic ganglion block were randomized into either the VR or the control group. In the VR group, procedure-related pain was controlled via infiltration of local anesthetics while watching a 30-minute VR hypnotic program. In the control group, the skin infiltration alone was used, with the VR device switched off. The primary endpoint was an 11-point score on the numerical rating scale, indicating procedure-related pain. Patients' satisfaction with pain control, anxiety levels, the need for additional local anesthetics during the procedure, hemodynamic stability, and any adverse events were assessed. Results: Procedure-related pain was significantly lower in the VR group (3.7 ± 1.4) than in the control group (5.5 ± 1.7; P = 0.002). Post-procedural anxiety was lower in the VR group than in the control group (P = 0.025), with a significant reduction from pre-procedural anxiety (P < 0.001). Although patients' satisfaction did not differ significantly (P = 0.158) between the groups, a higher number of patients required additional local anesthetics in the control group (n = 13) than in the VR group (n = 4; P = 0.001). No severe adverse events occurred in either group during the study. Conclusions: VR immersion can be safely used as a novel adjunct to reduce procedural pain and anxiety during fluoroscopic pain intervention.

Subjective Evaluation for Recovery from Visual Strain in Video Data Terminal Operation - How to Recover from Visual Strain in VDT Operation -

  • Muraoka, Tetsuya;Nakashima, Noboru;Ikeda, Hiroaki;Ishizaki, Yoshiaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.189-193
    • /
    • 1999
  • For a video data terminal (VDT) operator, visual strain was caused by continuous VDT operations was found id be recovered by watching the picture of virtual far point with the background of the complementary color when the treatment to recover from visual strain was carried out. When the VDT operator watches the picture of virtual far point with the condition of the complementary color stimuli on the CRT display in 60 or 120 minutes after the start of the VDT operation, the visual strain is recovered and the VDT operator is kept healthy.

  • PDF

Development of the Fishbot Using Haptic Technology (햅틱기술을 이용한 피시봇 개발)

  • Lee, Young-Dae;Kang, Jeong-Jin;Moon, Chan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.77-82
    • /
    • 2010
  • In this paper, a haptic fishing robot, Fishbot, for a Virtual Fishing System is presented. Fishbot is 3DOF robot and it consists of a XY table and a wheel motor. To simulate the motion of fish, XY table is controlled by position servo drivers with variable torque constraint, and wheel axis is controlled by torque servo driver. Finally, Fishibot detects the end point of fishing pole with cameras to recognize the pose of user, and it can interface with a Virtual Reality System.

Tracking Control for Biped Robot (이족 보행 로봇을 위한 추적 제어)

  • 이용권;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • In this paper, an optimal trunk trajectory for stable walking of biped robots is expressed as a simple differential equation, which is then solved by numerical methods. We used ZMP (Zero Moment Point), the virtual total ground reaction point within the region of the supporting food, as the criterion of stability of biped robot walking. If the ZMP is located outside of the stable region in dynamic walking, biped robots fall down. The biped robot considered in this paper consists of two legs and a trunk. The trajectories of the two legs and the ZMP of the biped robot are determined such that they are similar ti those of a human. Based upon those trajectories, the trunk trajectory is solved by numerically integrating differential dynamic equations. Leg motions are controlled by the computed torque control method. The effectiveness of control algorithm as well as the trajectories is confirmed by computer simulations.

  • PDF

Initial Investigation on Consolidation with Adaptive Dynamic Threshold for ABR Multicast Connections in ATM Networks (비동기 전송모드 망의 점대다중점연결을 위한 적응동적임계치기반 병합알고리즘)

  • Shin, Soung-Wook;Cho, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.962-966
    • /
    • 2001
  • The major problem at a branch point for point-to-multipoint available bit rate(ABR) services in asynchronous transfer mode (ATM) networks is how to consolidate backward resource management(BRM) cells from each branch for a multicast connection. In this paper, we propose an efficient feedback consolidation algorithm based on an adaptive dynamic threshold(ADT) to eliminate the consolidation noise and the reduce the consolidation delay. The main idea of the ADT algorithm lies in that each branch point estimates the ABR traffic condition of the network through the virtual queue estimation and the transmission threshold of the queue level in branch points is adaptively controlled according to the estimation. Simulation results show that the proposed ADT algorithm can achieve a faster response in congestion status and a higher link utilization compared with the previous works.

  • PDF

Stabilization Control of Inverted Pendulum by Self tuning Fuzzy Inference Technique (자기동조 피지추론 기법에 의한 도립진자의 안정화 제어)

  • Shim, Young-Jin;Kim, Tae-Woo;Lee, Oh-Keol;Park, Young-Sik;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.83-85
    • /
    • 1997
  • In this paper, a self-tunning fuzzy inference technique for stabilization of the inverted pendulum system is proposed. The facility of this self-tunning fuzzy controller which has swing-up control mode and a stabilization one, moves a pendulum in an initial natural stable equilibrium point and a cart in arbitrary position, to an unstable equilibrium point and a center of rail. Specially, the virtual equilibrium point(${\phi}_{VEq}$) which describes functionally considers the interactive dynamics between a position of cart and a angle of inverted pendulum is introduced. And comparing with the convention optimal controller, the proposed self-tunning fuzzy inference structure made substantially the inverted pendulum system robust and stable.

  • PDF

Control of Nonlinear System by Fuzzy Inference (퍼지추론에 의한 비선형시스템의 제어)

  • 심영진;송호신;이오걸;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.304-309
    • /
    • 1998
  • In this paper, a fuzzy controller for stabilization of the inverted pendulum system is propose. The facility of this fuzzy controller which has a swing-up control mode and a stabilization one, moves a pendulum in an initial natural stable equilibrium point and a cart in arbitary position, to an unstable equilibrium point and a center of rail. Specially, the virtual equilibrium point ($\Phi$veq) which describes functionally considers the interactive dynamics between a position of cart and a angle of inverted pendulum is introduced. And comparing with the convention optimal controller, the proposed hierarchical fuzzy inference structur made substantially the inverted pendulum system robust and stable.

  • PDF