• Title/Summary/Keyword: Virtual control point

Search Result 132, Processing Time 0.034 seconds

Implementation of Home-Network Sewer using UPnP based on the Embedded Linux (Embedded Linux 기반의 UPnP를 사용한 홈-네트워크 서버 구현)

  • 정진규;진선일;이희정;황인영;홍석교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.638-643
    • /
    • 2004
  • Middleware enables different networking devices and protocols to inter-operate in ubiquitous home network environments. The UPnP(Universal Plug and Play) middleware, which runs on a PC and is based on the IPv4 protocol, has attracted much interest in the field of home network research since it has versatility The UPnP, however, cannot be easily accessed via the public Internet since the UPnP devices that provide services and the Control Points that control the devices are configured with non-routable local private or Auto IP networks. The critical question is how to access UPnP network via the public Internet. The purpose of this paper is to deal with the non-routability problem in local private and Auto IP networks by improving the conventional Control Point used in UPnP middleware-based home networks. For this purpose, this paper proposes an improved Control Point for accessing and controlling the home network from remote sites via the public Internet, by adding a web server to the conventional Control Point. The improved Control Point is implemented in an embedded GNU/Linux system running on an ARM9 platform. Also this paper implements the security of the home network system based on the UPnP (Universal Plug and Play), adding VPN (Virtual Private Network) router that uses the IPsec to the home network system which is consisted of the ARM9 and the Embedded Linux.

Sensor and actuator design for displacement control of continuous systems

  • Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.147-172
    • /
    • 2007
  • The present paper is concerned with the design of distributed sensors and actuators. Strain type sensors and actuators are considered with their intensity continuously distributed throughout a continuous structure. The sensors measure a weighted average of the strain tensor. As a starting point for their design we introduce the concept of collocated sensors and actuators as well as the so-called natural output. Then we utilize the principle of virtual work for an auxiliary quasi-static problem to assign a mechanical interpretation to the natural output of the sensors to be designed. Therefore, we take the virtual displacements in the principle of virtual work as that part of the displacement in the original problem, which characterizes the deviation from a desired one. We introduce different kinds of distributed sensors, each of them with a mechanical interpretation other than a weighted average of the strain tensor. Additionally, we assign a mechanical interpretation to the collocated actuators as well; for that purpose we use an extended body force analogy. The sensors and actuators are applied to solve the displacement tracking problem for continuous structures; i.e., the problem of enforcing a desired displacement field. We discuss feed forward and feed back control. In the case of feed back control we show that a PD controller can stabilize the continuous system. Finally, a numerical example is presented. A desired deflection of a clamped-clamped beam is tracked by means of feed forward control, feed back control and a combination of the two.

Control of Haptic Hand Controller Using Collision Detection Algorithm (충돌감지 알고리듬을 적용한 햅틱 핸드 컨트롤러의 제어)

  • 손원선;조경래;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.992-995
    • /
    • 2003
  • A haptic device operated by the user's hand can receive information on position and orientation of the hand and display force and moment generated in the virtual environment to the hand. For realistic haptic display, the detailed information on collision between objects is necessary. In the past, the point-based graphic environment has been used in which the end effector of a haptic device was represented as a point and the interaction of this point with the virtual environment was investigated. In this paper, the shape-based graphic environment is proposed in which the interaction of the shape with the environment is considered to analyze collision or contact more accurately. To this end. the so-called Gilbert-Johnson-Keerthi (GJK) algorithm is adopted to compute collision points and collision instants between two shapes in the 3-D space. The 5- DOF haptic hand controller is used with the GJK algorithm to demonstrate a peg-in-hole operation in the virtual environment in conjunction with a haptic device. It is shown from various experiments that the shape-based representation with the GJK algorithm can provide more realistic haptic display for peg-in-hole operations.

  • PDF

A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot (이동 로봇을 위한 실시간 충돌 회피 궤적 계획과 제어)

  • 이수영;이석한;홍예선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.105-114
    • /
    • 1999
  • By using the conceptual impedance and the elasticity of a serial chain of spring-damper system, a real-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-Position adjustment to avoid a collision by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative optimization is carried out by the system of virtual robots. A control algorithm is proposed to implement the impedance for a car-like mobile robot.

  • PDF

An Adaptive Virtual Machine Location Selection Mechanism in Distributed Cloud

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4776-4798
    • /
    • 2015
  • The location selection of virtual machines in distributed cloud is difficult because of the physical resource distribution, allocation of multi-dimensional resources, and resource unit cost. In this study, we propose a multi-object virtual machine location selection algorithm (MOVMLSA) based on group information, doubly linked list structure and genetic algorithm. On the basis of the collaboration of multi-dimensional resources, a fitness function is designed using fuzzy logic control parameters, which can be used to optimize search space solutions. In the location selection process, an orderly information code based on group and resource information can be generated by adopting the memory mechanism of biological immune systems. This approach, along with the dominant elite strategy, enables the updating of the population. The tournament selection method is used to optimize the operator mechanisms of the single-point crossover and X-point mutation during the population selection. Such a method can be used to obtain an optimal solution for the rapid location selection of virtual machines. Experimental results show that the proposed algorithm is effective in reducing the number of used physical machines and in improving the resource utilization of physical machines. The algorithm improves the utilization degree of multi-dimensional resource synergy and reduces the comprehensive unit cost of resources.

A Design of the Evaluation Devices for the Vehicle Operational Control Algorithm of Personal Rapid Transit System (개인고속이동 시스템의 차량운행제어 알고리즘 검증을 위한 모의 장치 설계에 대한 연구)

  • Lee, Jun-Ho;Shin, Kyung-Ho;Kim, Yong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1191-1192
    • /
    • 2007
  • In this paper we deal with a design of the evaluation system to assess the vehicle operational control algorithm for Personal Rapid Transit(PRT) system. PRT system is different from the conventional rail traffic system in such point that the station is off-line so as to guarantee a very short headway. In this study we propose a evaluation system to assess the performance of the proposed vehicle control algorithm. The evaluation system is composed of virtual vehicles, central control system, virtual wayside facilities, monitoring equipments. In order to test the proposed evaluation system a test algorithm is used, which has been simulated in the combined simulation system between Labview Simulation Interface Toolkit and Matlab/Simulink.

  • PDF

On the Stability and Performance Limits of the Force Reflecting Haptic Manipulator (가상반발력을 생성하는 햅틱장비의 안정성과 성능한계에 관한 연구)

  • ;Greg R. Luecke
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.180-187
    • /
    • 1998
  • The stability and theoretical performance limits of the feedback controlled force reflecting haptic manipulator have been discussed. All the virtual environment which interact physically with the haptic system have its own stable performance limit. Three different realization of the interfaces have been compared using the driving point admittance. The haptic system which is separated from the human hand or finger is superior to its stable interaction provided that there is a means to apply a direct damping between the haptic manipulator and the human finger Electro-magnetic force is used for its digital implementation of the simple separated type haptic device. The stable limits of a virtual wall is calculated and experimental results show that there is performance limits in this implementation.

  • PDF

Research on the Open World System of Metaverse Content <Ready Player One>

  • JungWoo Lee;Jeanhun Chung
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.322-327
    • /
    • 2023
  • Recent advances in augmented reality (AR) and virtual reality (VR) technologies have led to a significant increase in metaverse platforms. Metaverses are setting a new direction for the digital world. This paper examines the phenomenon of virtual worlds that are becoming an issue these days, focusing on [Ready Player One]. One of the common features of the metaverse platform in [Ready Player One] and the platforms currently in use is the concept of open world. This is a feature that goes beyond simply moving around in a virtual world and allows users to freely reset, participate in, and control the environment. This innovative concept is a hallmark of metaverse platforms, and it is becoming increasingly important and influential. Through this study, we focused on the [open world system] of the platform in the movie and the modern metaverse platform, and suggested and studied how the scalability of the metaverse will present a turning point in the future.

Stabilization control of inverted pendulum by adaptive fuzzy inference technique (적응 퍼지추론 기법에 의한 도립진자의 안정화 제어)

  • 전부찬;심영진;이준탁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.207-210
    • /
    • 1997
  • In this paper, a hierarchical fuzzy controller for stabilization of the inverted pendulum system is proposed. The facility of this hierarchical fuzzy controller which has a swing-up control mode and a stabilization one, moves a pendulum in an initial natural stable equilibrium point and a cart in arbitrary position to an unstable equilibrium point and a center of rail. Specially, the virtual equilibrium point (.PHI.$_{VEq}$ ) which describes functionally considers the interactive dynamics between a position of cart and a angle of inverted pendulum is introduced. And comparing with the convention optimal controller, the proposed hierarchical fuzzy inference made substantially the inverted pendulum system robust and stable.e.

  • PDF

GCP(GROUND CONTROL POINT) FOR AUTOMATION OF THE HIGH RESOLUTION SATELLITE IMAGE REVISION

  • Jo, Myung-Hee;Jung, Yun-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.219-222
    • /
    • 2007
  • Today, use of high resolution satellite image with at least 1m resolution is expanding into many more areas including forest, river way, city, seashore and so forth for disaster prevention. Interest in this medium is increasing among the general public due to the roll-out to the private sector as Google earth, Virtual Earth and so forth. However, pre-processing process that revises the geometrical distortion that result at the time of photographing is required in order to use high resolution satellite image. The purpose of this research is to search the most accurate GCP(Ground Control Point) information acquisition method that is used for the revision of high resolution satellite image's geometrical distortion through automated processing. Through this, it is possible to contribute to increasing the level of accuracy at the time of high resolution satellite image revision and to secure promptness.

  • PDF