• Title/Summary/Keyword: Virtual Validation

Search Result 105, Processing Time 0.027 seconds

Classification of HDAC8 Inhibitors and Non-Inhibitors Using Support Vector Machines

  • Cao, Guang Ping;Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.4 no.1
    • /
    • pp.2.1-2.7
    • /
    • 2012
  • Introduction: Histone deacetylases (HDAC) are a class of enzymes that remove acetyl groups from ${\varepsilon}$-N-acetyl lysine amino acids of histone proteins. Their action is opposite to that of histone acetyltransferase that adds acetyl groups to these lysines. Only few HDAC inhibitors are approved and used as anti-cancer therapeutics. Thus, discovery of new and potential HDAC inhibitors are necessary in the effective treatment of cancer. Materials and Methods: This study proposed a method using support vector machine (SVM) to classify HDAC8 inhibitors and non-inhibitors in early-phase virtual compound filtering and screening. The 100 experimentally known HDAC8 inhibitors including 52 inhibitors and 48 non-inhibitors were used in this study. A set of molecular descriptors was calculated for all compounds in the dataset using ADRIANA. Code of Molecular Networks. Different kernel functions available from SVM Tools of free support vector machine software and training and test sets of varying size were used in model generation and validation. Results and Conclusion: The best model obtained using kernel functions has shown 75% of accuracy on test set prediction. The other models have also displayed good prediction over the test set compounds. The results of this study can be used as simple and effective filters in the drug discovery process.

Automatic Construction of SHACL Schemas for RDF Knowledge Graphs Generated by Direct Mappings

  • Choi, Ji-Woong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.23-34
    • /
    • 2020
  • In this paper, we proposes a method to automatically construct SHACL schemas for RDF knowledge graphs(KGs) generated by Direct Mapping(DM). DM and SHACL are all W3C recommendations. DM consists of rules to transform the data in an RDB into an RDF graph. SHACL is a language to describe and validate the structure of RDF graphs. The proposed method automatically translates the integrity constraints as well as the structure information in an RDB schema into SHACL. Thus, our SHACL schemas are able to check integrity instead of RDBMSs. This is a consideration to assure database consistency even when RDBs are served as virtual RDF KGs. We tested our results on 24 DM test cases, published by W3C. It was shown that they are effective in describing and validating RDF KGs.

Validation of G-HEXACO for Application to Game Character's Personality - Focusing on FIFA Online3- (온라인 게임 캐릭터에 성격을 적용하기 위한 G-HEXACO 타당화 연구: FIFA ONLINE3을 중심으로)

  • Kim, Mi-Sun;Ko, Il-Ju
    • Journal of Korea Game Society
    • /
    • v.15 no.5
    • /
    • pp.7-18
    • /
    • 2015
  • The purpose of the present study is to build a theoretical basis for game character that represents the various personalities and interacts with the other characters in the game, applying the HEXACO theory to game character. It is hard to use the HEXACO to the game because the HEXACO is a theory based on the real world, on the contrary, the game has features of the virtual reality. Therefore, the HEXACO needs to be converted to Game HEXACO(G-HEXACO) for applying personality factors to the game character. To achieve this, we surveyed the HEXACO-PI-R and game questions related with the HEXACO factors. On the basis of the results, we designed G-HEXACO. This study means that the HEXACO could be replaced with the G-HEXACO to applying personality factors to the game character.

A comparison of deep-learning models to the forecast of the daily solar flare occurrence using various solar images

  • Shin, Seulki;Moon, Yong-Jae;Chu, Hyoungseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.61.1-61.1
    • /
    • 2017
  • As the application of deep-learning methods has been succeeded in various fields, they have a high potential to be applied to space weather forecasting. Convolutional neural network, one of deep learning methods, is specialized in image recognition. In this study, we apply the AlexNet architecture, which is a winner of Imagenet Large Scale Virtual Recognition Challenge (ILSVRC) 2012, to the forecast of daily solar flare occurrence using the MatConvNet software of MATLAB. Our input images are SOHO/MDI, EIT $195{\AA}$, and $304{\AA}$ from January 1996 to December 2010, and output ones are yes or no of flare occurrence. We consider other input images which consist of last two images and their difference image. We select training dataset from Jan 1996 to Dec 2000 and from Jan 2003 to Dec 2008. Testing dataset is chosen from Jan 2001 to Dec 2002 and from Jan 2009 to Dec 2010 in order to consider the solar cycle effect. In training dataset, we randomly select one fifth of training data for validation dataset to avoid the over-fitting problem. Our model successfully forecasts the flare occurrence with about 0.90 probability of detection (POD) for common flares (C-, M-, and X-class). While POD of major flares (M- and X-class) forecasting is 0.96, false alarm rate (FAR) also scores relatively high(0.60). We also present several statistical parameters such as critical success index (CSI) and true skill statistics (TSS). All statistical parameters do not strongly depend on the number of input data sets. Our model can immediately be applied to automatic forecasting service when image data are available.

  • PDF

Mutual Authentication and Secure Session Termination Scheme in iATA Protocol

  • Ong, Ivy;Lee, Shirly;Lee, Hoon-Jae;Lim, Hyo-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.437-442
    • /
    • 2010
  • Ubiquitous mobile computing is becoming easier and more attractive in this ambient technological Internet world. However, some portable devices such as Personal Digital Assistant (PDAs) and smart phones are still encountering inherent constraints of limited storages and computing resources. To alleviate this problem, we develop a cost-effective protocol, iATA to transfer ATA commands and data over TCP/IP network between mobile appliances and stationary servers. It provides mobile users a virtual storage platform which is physically resided at remote home or office. As communications are made through insecure Internet connections, security risks of adopting this service become a concern. There are many reported cases in the history where attackers masquerade as legitimate users, illegally access to network-based applications or systems by breaking through the poor authentication gates. In this paper, we propose a mutual authentication and secure session termination scheme as the first and last defense steps to combat identity thief and fraud threat in particular for iATA services. Random validation factors, large prime numbers, current timestamps, one-way hash functions and one-time session key are deployed accordingly in the scheme. Moreover, we employ the concept of hard factorization problem (HFP) in the termination phase to against fraud termination requests. Theoretical security analysis discussed in later section indicates the scheme supports mutual authentication and is robust against several attacks such as verifiers' impersonation, replay attack, denial-of-services (DoS) attack and so on.

Wind Speed Prediction in Complex Terrain Using a Commercial CFD Code (상용 CFD 프로그램을 이용한 복잡지형에서의 풍속 예측)

  • Woo, Jae-Kyoon;Kim, Hyeon-Gi;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.8-22
    • /
    • 2011
  • Investigations on modeling methods of a CFD wind resource prediction program, WindSim for a ccurate predictions of wind speeds were performed with the field measurements. Meteorological Masts having heights of 40m and 50m were installed at two different sites in complex terrain. The wind speeds and direction were monitored from sensors installed on the masts and recorded for one year. Modeling parameters of WindSim input variables for accurate predictions of wind speeds were investigated by performing cross predictions of wind speeds at the masts using the measured data. Four parameters that most affect the wind speed prediction in WindSim including the size of a topographical map, cell sizes in x and y direction, height distribution factors, and the roughness lengths were studied to find out more suitable input parameters for better wind speed predictions. The parameters were then applied to WindSim to predict the wind speed of another location in complex terrain in Korea for validation. The predicted annual wind speeds were compared with the averaged measured data for one year from meteorological masts installed for this study, and the errors were within 6.9%. The results of the proposed practical study are believed to be very useful to give guidelines to wind engineers for more accurate prediction results and time-saving in predicting wind speed of complex terrain that will be used to predict annual energy production of a virtual wind farm in complex terrain.

Algorithm for Determining Whether Work Data is Normal using Autoencoder (오토인코더를 이용한 작업 데이터 정상 여부 판단 알고리즘)

  • Kim, Dong-Hyun;Oh, Jeong Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.63-69
    • /
    • 2021
  • In this study, we established an algorithm to determine whether the work in the gas facility is a normal work or an abnormal work using the threshold of the reconstruction error of the autoencoder. This algorithm do deep learning the autoencoder only with time-series data of a normal work, and derives the optimized threshold of the reconstruction error of the normal work. We applied this algorithm to the time series data of the new work to get the reconstruction error, and then compare it with the reconstruction error threshold of the normal work to determine whether the work is normal work or abnormal work. In order to train and validate this algorithm, we defined the work in a virtual gas facility, and constructed the training data set consisting only of normal work data and the validation data set including both normal work and abnormal work data.

Implementation of Speech Recognition and Flight Controller Based on Deep Learning for Control to Primary Control Surface of Aircraft

  • Hur, Hwa-La;Kim, Tae-Sun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.57-64
    • /
    • 2021
  • In this paper, we propose a device that can control the primary control surface of an aircraft by recognizing speech commands. The speech command consists of 19 commands, and a learning model is constructed based on a total of 2,500 datasets. The training model is composed of a CNN model using the Sequential library of the TensorFlow-based Keras model, and the speech file used for training uses the MFCC algorithm to extract features. The learning model consists of two convolution layers for feature recognition and Fully Connected Layer for classification consists of two dense layers. The accuracy of the validation dataset was 98.4%, and the performance evaluation of the test dataset showed an accuracy of 97.6%. In addition, it was confirmed that the operation was performed normally by designing and implementing a Raspberry Pi-based control device. In the future, it can be used as a virtual training environment in the field of voice recognition automatic flight and aviation maintenance.

A Study on Development and Validation of Digital Literacy Measurement Tool (디지털 리터러시 측정도구의 개발 및 예측타당성 검증 연구)

  • Chung, Mi-hyun;Kim, Jaehyoun;Hwang, Ha-sung
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.51-63
    • /
    • 2021
  • Recently, virtual communication has become a standard tool due to the outbreak of COVID-19. Likewise online communication is emerging as an essential competency. In this study, we aimed to develop a comprehensive and systematic digital literacy measurement tool reflecting the changes and needs of society. Construct variables were drawn by characterizing existing digital literacy measurement tools. Thirty-four items corresponding to the concept of each variable were developed. The developed measurement tool was then evaluated in the form of surveys from university students belonging to the digital native generation, and the reliability and validity were performed through exploratory and confirmatory factor analysis. The digital literacy measurement tool contained five sub-factors and twenty-five questions. In addition, hierarchical regression analysis was performed to verify the predictive validity of digital literacy sub-factors. Based on these findings, the implication of future research is discussed.

An In Silico Drug Repositioning Strategy to Identify Specific STAT-3 Inhibitors for Breast Cancer

  • Sruthy Sathish
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.123-131
    • /
    • 2023
  • Breast cancer continues to pose a substantial worldwide health challenge, thereby requiring the development of innovative strategies to discover new therapeutic interventions. Signal Transducer and Activator of Transcription 3 (STAT-3) has been identified as a significant factor in the development of several types of cancer, including breast cancer. This is primarily attributed to its diverse functions in promoting tumour formation and conferring resistance to therapeutic interventions. This study presents an in silico drug repositioning approach that focuses on identifying specific inhibitors of STAT-3 for the purpose of treating breast cancer. We initially examined the structural and functional attributes of STAT-3, thereby elucidating its crucial involvement in cellular signalling cascades. A comprehensive virtual screening was performed on a diverse collection of drugs that have been approved by the FDA from zinc15 database. Various computational techniques, including molecular docking, cross docking, and cDFT analysis, were utilised in order to prioritise potential candidates. This prioritisation was based on their predicted binding energies and outer molecular orbital reactivity. The findings of our study have unveiled a Dihydroergotamine and Paritaprevir that have been approved by the FDA and exhibit considerable promise as selective inhibitors of STAT-3. In conclusion, the utilisation of our in silico drug repositioning approach presents a prompt and economically efficient method for the identification of potential compounds that warrant subsequent experimental validation as selective STAT-3 inhibitors in the context of breast cancer. The present study highlights the considerable potential of employing computational strategies to expedite the drug discovery process. Moreover, it provides valuable insights into novel avenues for targeted therapeutic interventions in the context of breast cancer treatment.