• Title/Summary/Keyword: Virtual Training System

Search Result 331, Processing Time 0.024 seconds

Development of C2 Virtual Linked Simulator For Engineering and Engagement Level Battle Experimentation (공학-교전급 전투실험을 위한 C2 가상모의 연동 시뮬레이터 개발)

  • Lee, Sangtae;Lee, Seungyoung;Hwang, Kun-Chul;Kim, Saehwan;Lee, Kyuhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2013
  • The Korean naval weapon systems, combat experiments establish the concept of Battle operations, and create the future of the new weapons system. Doctrine development and training as well as ranging from experiments for evaluate the performance of mission operations for combat experiments are used. The battle lab is effectively support tool for the Korean Naval battle experiments. The battle lab is through a dedicated testing facility and to build efficient and effective simulation-based acquisition supporting environment. In this paper, the ship / submarines C2 operations virtual simulator was developed to support the concept of Battle operations of naval combat experiments in training and tactical development. The ship C2 operations virtual simulator makes the anti-ship and anti-aircraft the engagement scenario for performed experiments using the SADM. The submarines C2 operations virtual simulator makes the anti-submarine engagement scenario for performed experiments using EAS. EAS System was created before reuse. EAS system by modifying the additional interfaces HLA-RTI has been reused. Reflected in the tactics and training after analysis of the results through the battle experiment. Also increase training fidelity through operator involvement. The anti-ship and anti-aircraft system architecture (SADM) and anti-submarine system architecture (EAS) requires unique design of system framework since two separate architectures should be integrated into a system. An C2 virtual linked architecture was used to integrate different system architecture. A C2 virtual linked software framework, designed that have integrated protocol for battle experimental linkage and battlefield visualization environment.

Virtual Tactical Map : Military Briefing Tools for Virtual Training based on Augmented Reality (가상 전술 지도 : 증강현실에 기반한 군사 훈련 브리핑 도구)

  • Jung Kyung-Boo;Lee Sang-Won;Choi Byung-Uk;Jeong Seung-Do
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.341-350
    • /
    • 2006
  • The sand table training is one of the most effective training method in military operations which can accomplish missions such as simulation and rehearsal without limitations related to time, space, money and so on. Previous sand table training has many problems like that the sand table cannot represent real field condition because of its physical properties. So, it is hard to be preserved and impossible to include much of information into them. In this paper, we make an approach based on Augmented Reality(AR) to solve these problems and propose an efficient military training briefing tool with virtual sand table environment described as actual battle field Virtual Tactical Map(VTM) can realize a virtual military training with simple action like moving marker or tangible interface by hand. Real-time state information of VTM gives us more organic intelligence for entire situation. Tangible AR interface provides users with a contents authoring tool that is natural, intuitive and easy to deal with as interaction between user in real world and system that augmented real world with virtual object. VTM is a newly designed military training briefing tools. A military training content can be reproduced and it is possible that user uses this content later. Thus, it shows us potential possibilities of AR applications on military leaning field.

Effects of Virtual Reality Horse Riding Simulator Training Using a Head-Mounted Display on Balance and Gait Functions in Children with Cerebral Palsy: A Preliminary Pilot Study

  • Kim, Hae Won;Nam, Ki Seok;Son, Sung Min
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.5
    • /
    • pp.273-278
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the effects of three-dimensional virtual reality horse riding simulator training using a head-mounted display on gait and balance in children with cerebral palsy. Methods: Ten children with cerebral palsy were randomly assigned to the horse riding simulator (HRS) group (n=5) or the horse riding simulator with virtual reality (HRSVR) group (n=5). To evaluate balance, center of gravity (COG) sway velocity and total sway distance of each group were assessed using the Wii balance board, and gait speed and stride length of each group were assessed using a gait analysis system. Results: Intra-group comparisons between pre- and post-intervention measures revealed that there were significant changes in all gait and balance variables such as stride length, gait velocity, COG sway velocity and COG sway distance in the HRSVR group (p<0.05). In the HRS group, there were significant changes in all variables except stride length (p<0.05). In addition, inter-group comparisons showed significant differences between the two groups in stride length, gait velocity and COG sway distance except COG sway velocity (p<0.05). Conclusion: The findings of this study suggest that horse riding simulator training combined with 3D virtual reality can be a new positive therapeutic approach for improving functional performance in children with cerebral palsy.

Virtual Reality Therapy System for the get over tranining of Acrophobia (고소공포증 극복훈련을 위한 가상환경시스템)

  • 백승은;유종현;백승화;주관식
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.203-209
    • /
    • 2004
  • Virtual Reality(VR) is a new technology which makes humans communicate with computer. It allows the user to see, hear, feel and interact in a three-dimensional virtual world created graphically. In this paper, we introduced VR into psychotherapy area and developed VR system for the exposure therapy of acrophobia. Acrophobia is an abnormal fear of heights. Medications or cognitive-behavior methods have been mainly used as a treatment. Lately the virtual reality technology has been applied to that kind of anxiety disorders. A virtual environment provides patient with stimuli which arouses phobia, and exposing to that environment makes him having ability to over come the fear. In this study, the elevator stimulator that composed with a position sensor, head mount display, and audio system, is suggested. To illustrate the physiological difference between a person who has a feel of phobia and without phobia, heart rate was measured during experiment. And also measured a person's HR after the virtual reality training. In this study, we demonstrated the subjective effectiveness of virtual reality psychotherapy through the clinical experiment.

  • PDF

Effects of Virtual Reality-Based Exercise on Balance, Gait, and Falls Efficacy in Patients with Parkinson's Disease: A pilot study (가상현실 기반 운동이 파킨슨병 환자의 균형, 보행 및 낙상효능감에 미치는 영향: 예비연구)

  • Kim, Yonggyun;Kang, Soonhee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.2
    • /
    • pp.1-11
    • /
    • 2016
  • Purpose : The purpose of this study was to identify whether virtual reality-based exercise could improve on balance, gait and fall efficacy in patients with Parkinson's disease. Methods : Ten patients with Parkinson's disease were randomly divided into either an experimental or control group. The experimental subjects performed vertual reality-based exercise, whereas the control subjects performed conventional physical therapy for 4 weeks. The balance, gait and fall efficacy of all subjects were assessed by using the Measurement Training and Documentation (MTD) balance system, force platform system, Korean version of Berg Balance scale (K-BBS), 6 Minute Walk Test (6MWT), and Korean version of Fall efficacy scale (K-FES) at pre training and post training. Wilcoxon signed rank test was used to analyze change before and after intervention in intra-group. Mann Whitney U test was used to analyze changes of all variables in inter-groups. Results : Subjects in the experimental group showed significant improvements in difference of weight distribution, K-BBS scores, antero-posterior and medio-lateral sway length, ground reaction force (GRF), 6MWT, and step length following training. The changes of difference of weight distribution, K-BBS scores, AP Sway Length, GRF, 6MWT, step length and K-FES scores in the experimental group were significantly more than them of the control group. Conclusion : The result of this study suggest that virtual reality-based exercise training is an intervention to improve on balance, gait, and falls efficacy in patients with Parkinson's disease.

Development on AR-Based Operator Training Simulator(OTS) for Chemical Process Capable of Multi-Collaboration (다중협업이 가능한 AR 기반 화학공정 운전원 교육 시뮬레이터(OTS-Simulator) 개발)

  • Lee, Jun-Seo;Ma, Byung-Chol;An, Su-Bin
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.22-30
    • /
    • 2022
  • In order to prevent chemical accidents caused by human error, a chemical accident prevention and response training program using advanced technology was developed. After designing a virtual process based on the previously built pilot plant, chemical accident response contents were developed. A part of the pilot facility was remodeled for content realization and a remote control function was given. In addition, a DCS program that can control facilities in a virtual environment was developed, and chemical process operator training (OTS) that can finally respond to virtual chemical accidents was developed in conjunction with AR. Through this, trainees can build driving skills by directly operating the device, and by responding to virtual chemical accidents, they can develop emergency response capabilities. If the next-generation OTS like this study is widely distributed in the chemical industry, it is expected to greatly contribute to the prevention of chemical accidents caused by human error.

A Correspondence Training Scenario against Bypassing Information Protection System Attacks (네트워크 정보보호시스템 우회 공격에 대한 대응훈련 시나리오)

  • Hong, Jeong Soo;Yang, Dong Min;Lee, Bong Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.818-828
    • /
    • 2018
  • Nowadays, various security systems are developed and used for protecting information on the network. Although security solutions can prevent some of the security risks, they provide high performance only if used appropriately in accordance with their purposes and functionality. Security solutions commonly used in information protection systems include firewalls, IDS, and IPS. However, despite various information protection systems are introduced, there are always techniques that can threaten the security systems through bypassing them. The purpose of this paper is to develop effective training techniques for responding to the bypass attack techniques in the information security systems and to develop effective techniques that can be applied to the training. In order to implement the test bed we have used GNS3 network simulator, and deployed it on top of virtual operating system using VirtualBox. The proposed correspondence training scenario against bypassing information protection system attacks could be very effectively used to counteract the real attacks.

Development of a 3-D Immersion Type Training Simulator

  • Jung, Young-Beom;Park, Chang-Hyun;Jang, Gil-Soo
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.171-177
    • /
    • 2004
  • In the current age of the information oriented society in which we live, many people use PCs and are dependant on the databases provided by the network server. However, online data can be missed during the occurrence of a blackout and furthermore, power failure can greatly effect Power Quality. This has resulted in the trend of using interruption-free live-line work when trouble occurs in a power system. However, 83% of the population receives an electric shock experience when a laborer is performing interruption-free live-line work. In the interruption-free method, education and training problems have been pinpointed. However, there are few instructors to implement the necessary training. Furthermore, the trainees undergo only a short training period of just 4 weeks. In this paper, to develop a method with no restrictions on time and place and to ensure a reduction in the misuse of materials, immersion type virtual reality (or environment) technology is used. The users of a 3D immersion type VR training system can interact with the system by performing the equivalent action in a safe environment. Thus, it can be valuable to apply this training system to such dangerous work as 'Interruption-free live-line work exchanging COS (Cut-Out-Switch)'. In this program, the user carries out work according to instructions displayed through the window and speaker and cannot perform other tasks until each part of the task is completed in the proper sequence. The workers using this system can utilize their hands and viewpoint movement since they are in a real environment but the trainee cannot use all parts and senses of a real body with the current VR technology. Despite these weak points, when we consider the trends of improvement in electrical devices and communication technology, we can say that 3D graphic VR application has high potentiality.

Effects of Visual Feedback Treadmill Gait Training Program Combined with Virtual Reality Technology and a Force Plate Measurement System on Gait Ability and Quality of Life in Stroke Patients (가상현실과 힘판을 통한 시각적 되먹임 트레드밀 보행훈련이 뇌졸중 환자의 보행능력과 삶의 질에 미치는 영향)

  • Lee, Dong-Ryul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.363-373
    • /
    • 2020
  • The purpose of this study was to improve the gait ability and quality of life of stroke patients by combining virtual reality technology and a visual feedback gait training program with entertainment elements. Ten stroke patients with circumduction gait were selected. The visual feedback treadmill gait training program using virtual reality technology and a force plate measurement system was conducted 30 minutes a day, 5 days a week, with 25 sessions in 5 weeks. To investigate the effects of this gait training program, evaluations using the joint range-of-motion test, muscle activity tests, Berg balance scale (BBS), gait analysis, and stroke-specific quality-of-life scale (SS-QOL) were performed before and after intervention. Statistically significant differences were found in the joint range of motion and muscle activity of the affected side from the initial swing phase to the mid-swing phase of the gait cycle, dynamic balance, gait function, and quality of life (p <0.05). The results of this study indicate that the gait training program improved the foot drop, muscle activity, dynamic balance, and gait ability of stroke patients with circumduction gait, thereby improving the quality of life of the patients. Therefore, we recommend the application of the visual feedback treadmill gait training program using virtual reality technology and a force plate measurement system to improve gait ability and quality of life of stroke patients with circumduction gait.

VIRTUAL REALITY SHIP SIMULATOR

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.06a
    • /
    • pp.93-105
    • /
    • 2000
  • This paper describes prototype Virtual Reality Ship Simulator (VRSS) that we have recently developed next-generation training equipment based on the virtual reality (VR) technology. The inherent defects of conventional ship simulators are enormous costs and difficult system upgrade due to the system construction, such as large mock-up bridge system, wide visual presentations, In this paper, to cope with those problems, we explored VR technology that can give realistic environments in a virtual world. Then we constructed prototype VRSS system, which is, consists of PC-based human sensors, and Databases set having 3D object models and coefficients of Head Related Transfer Functions (HRTFs). 3D-WEBMASTER authoring tool was used as Virtual Reality Modeling Language (VRML). Using the VRSS system, we constructed Port an Passage Simulator for the harbor of INCHON in Korea, and Ship and Sea State Simulator for an arbitrary given sea environmental states by user. Through many simulation tests, we testified the efficiency of developed prototype VRSS by subject assessment with five participants. Then, we present results on the simulation experiments and conclude with discussion of evaluation results.

  • PDF