• Title/Summary/Keyword: Virtual System

Search Result 4,608, Processing Time 0.035 seconds

Implementation of A Web-based Virtual Laboratory for Electrical Circuits (웹기반 전기회로 가상 실험실 구현)

  • Kim, Dong-Sik;Choi, Kwan-Sun;Lee, Sun-Heum;Seo, Ho-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2487-2489
    • /
    • 2001
  • This paper presents a virtual laboratory system which can be creating efficiencies in the learning process. The proposed virtual laboratory system for electrical circuits provides interactive learning environment under which the multimedia capabilities of world-wide web can be enhanced. The virtual laboratory system is implemented to describe the on-campus laboratory, the learners can obtain similar experimental data through it. The virtual laboratory system is composed of four important components : Principle classroom, Simulation classroom, Virtual experiment classroom and Management system. Learning efficiencies as well as faculty productivity are increased in this innovative teaching and learning environment.

  • PDF

A Study on th Networked Virtual Manufacturing System for Virtual Enterprises (가상 기업을 위한 네트워크 기반 가상 생산 시스템에 관한 연구)

  • Kong, Sang-Hoon;Han, Young-Geun;Lee, Kyo-Il
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.639-645
    • /
    • 2000
  • Virtual manufacturing systems that perform production activities ahead of real production in virtual world can reduce time and cost to develop, design, plan, and manage new products. In this paper, a virtual manufacturing system is constructed as a tool to support decision making by using VRML and Java. The basic structure of the virtual manufacturing system and the operation models are also presented. The developed system helps any related persons to share design and manufacturing information, and to perform their tasks collaboratively through Internet. The other function of the system is to monitor operation status in real time.

  • PDF

A Hybrid Cloud Testing System Based on Virtual Machines and Networks

  • Chen, Jing;Yan, Honghua;Wang, Chunxiao;Liu, Xuyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1520-1542
    • /
    • 2020
  • Traditional software testing typically uses many physical resources to manually build various test environments, resulting in high resource costs and long test time due to limited resources, especially for small enterprises. Cloud computing can provide sufficient low-cost virtual resources to alleviate these problems through the virtualization of physical resources. However, the provision of various test environments and services for implementing software testing rapidly and conveniently based on cloud computing is challenging. This paper proposes a multilayer cloud testing model based on cloud computing and implements a hybrid cloud testing system based on virtual machines (VMs) and networks. This system realizes the automatic and rapid creation of test environments and the remote use of test tools and test services. We conduct experiments on this system and evaluate its applicability in terms of the VM provision time, VM performance and virtual network performance. The experimental results demonstrate that the performance of the VMs and virtual networks is satisfactory and that this system can improve the test efficiency and reduce test costs through rapid virtual resource provision and convenient test services.

Development and Test of the Remote Operator Visual Support System Based on Virtual Environment (가상환경기반 원격작업자 시각지원시스템 개발 및 시험)

  • Song, T.G.;Park, B.S.;Choi, K.H.;Lee, S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.429-439
    • /
    • 2008
  • With a remote operated manipulator system, the situation at a remote site can be rendered through remote visualized image to the operator. Then the operator can quickly realize situations and control the slave manipulator by operating a master input device based on the information of the virtual image. In this study, the remote operator visual support system (ROVSS) was developed for viewing support of a remote operator to perform the remote task effectively. A visual support model based on virtual environment was also inserted and used to fulfill the need of this study. The framework for the system was created by Windows API based on PC and the library of 3D graphic simulation tool such as ENVISION. To realize this system, an operation test environment for a limited operating site was constructed by using experimental robot operation. A 3D virtual environment was designed to provide accurate information about the rotation of robot manipulator, the location and distance of operation tool through the real time synchronization. In order to show the efficiency of the visual support, we conducted the experiments by four methods such as the direct view, the camera view, the virtual view and camera view plus virtual view. The experimental results show that the method of camera view plus virtual view has about 30% more efficiency than the method of camera view.

The Method of Virtual Reality-based Surgical Navigation to Reproduce the Surgical Plan in Spinal Fusion Surgery (척추 융합술에서 수술 계획을 재현하기 위한 가상현실 기반 수술 내비게이션 방법)

  • Song, Chanho;Son, Jaebum;Jung, Euisung;Lee, Hoyul;Park, Young-Sang;Jeong, Yoosoo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2022
  • In this paper, we proposed the method of virtual reality-based surgical navigation to reproduce the pre-planned position and angle of the pedicle screw in spinal fusion surgery. The goal of the proposed method is to quantitatively save the surgical plan by applying a virtual guide coordinate system and reproduce it in the surgical process through virtual reality. In the surgical planning step, the insertion position and angle of the pedicle screw are planned and stored based on the virtual guide coordinate system. To implement the virtual reality-based surgical navigation, a vision tracking system is applied to set the patient coordinate system and paired point-based patient-to-image registration is performed. In the surgical navigation step, the surgical plan is reproduced by quantitatively visualizing the pre-planned insertion position and angle of the pedicle screw using a virtual guide coordinate system. We conducted phantom experiment to verify the error between the surgical plan and the surgical navigation, the experimental result showed that target registration error was average 1.47 ± 0.64 mm when using the proposed method. We believe that our method can be used to accurately reproduce a pre-established surgical plan in spinal fusion surgery.

Computerized Human Body Modeling and Work Motion-capturing in a 3-D Virtual Clothing Simulation System for Painting Work Clothes Development

  • Park, Gin Ah
    • Journal of Fashion Business
    • /
    • v.19 no.3
    • /
    • pp.130-143
    • /
    • 2015
  • By studying 3-D virtual human modeling, motion-capturing and clothing simulation for easier and safer work clothes development, this research aimed (1) to categorize heavy manufacturing work motions; (2) to generate a 3-D virtual male model and establish painting work motions within a 3-D virtual clothing simulation system through computerized body scanning and motion-capturing; and finally (3) to suggest simulated clothing images of painting work clothes developed based on virtual male avatar body measurements by implementing the work motions defined in the 3-D virtual clothing simulation system. For this, a male subject's body was 3-D scanned and also directly measured. The procedures to edit a 3-D virtual model required the total body shape to be 3-D scanned into a digital format, which was revised using 3-D Studio MAX and Maya rendering tools. In addition, heavy industry workers' work motions were observed and recorded by video camera at manufacturing sites and analyzed to categorize the painting work motions. This analysis resulted in 4 categories of motions: standing, bending, kneeling and walking. Besides, each work motion category was divided into more detailed motions according to sub-work posture factors: arm angle, arm direction, elbow bending angle, waist bending angle, waist bending direction and knee bending angle. Finally, the implementation of the painting work motions within the 3-D clothing simulation system presented the virtual painting work clothes images simulated in a dynamic mode.

Construction of Visual Algorithms for the Visual System Analysis of Virtual Reality HMD Devices -Through Interactive Visual System Analysis that Appears in Media Art- (가상현실 HMD기기의 시각체계 분석을 위한 시각 알고리즘 구축 -미디어 아트에서 나타나는 인터렉티브형 시각체계 분석을 통해-)

  • Lim, Sang Guk
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.721-727
    • /
    • 2020
  • The change in 21st century imaging media technology is changing our modern visual system. Virtual reality HMD devices, one of the core technologies of 5G, reproduce the new visual system. However, there is a lack of analysis and understanding of the visual operating system to understand the visual system of the fast-changing variety of imaging media. This study analyzed the three visual systems appearing in the recent imaging media art area and presented an engineering perspective algorithm for its procedures and methods. Through these results, we want to build algorithms that understand the visual system of virtual reality HMD devices.

The Design and Implementation of Virtual Studio

  • Sul, Chang-Whan;Wohn, Kwang-Yoen
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.83-87
    • /
    • 1996
  • A virtual reality system using video image is designed and implemented. A participant having 2{{{{ { 1} over { 2} }}}}DOF can interact with the computer-generated virtual object using her/his full body posture and gesture in the 3D virtual environment. The system extracts the necessary participant-related information by video-based sensing, and simulates the realistic interaction such as collision detection in the virtual environment. The resulting scene obtained by compositing video image of the participant and virtual environment is updated in near real time.

  • PDF

Analysis on Causal Factors Affecting the Stress of Pilots by the Environmental Differences between Live-Virtual Simulation (Live-Virtual 시뮬레이션 환경차이에 따른 조종사 스트레스 유발요인 분석)

  • Kim, Jinju;Kim, Sungho;Seol, Hyeonju;Jee, Cheolkyu;Hong, Youngseok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Recently, Live-Virtual-Constructive (L-V-C) integrate training system has proposed as a solution for the problems such as limitation of training areas, increase of mission complexity, rise in oil prices. In order to integrate each training system into the one effectively, we should solve the issue about stress of pilots by the environmental differences between Live and Virtual simulation which could be occurred when each system is connected together. Although it was already examined in previous study that the psychological effects on pilots was occurred by the environmental differences between actual and simulated flights, the study did not include what the causal factors affecting psychological effects are. The aim of this study is to examine which environmental factors that cause pilots' psychological effects. This study analyzed the biochemical stress hormone, cortisol to measure the pilots' psychological effects and cortisol was measured using Enzyme-linked immunoassay (EIA). A total of 40 pilots participated in the experiment to compare the differences in pilots' cortisol response among live simulation, virtual simulation, and the virtual simulation applying three environmental factors (gravity force, noise, and equipment) respectively. As a result, there were significant differences in cortisol level when applied the gravity force and equipment factors to the virtual simulation, while there was no significant difference in the case of the noise factor. The results from this study can be used as a basis for the future research on how to make L-V system by providing minimum linkage errors and design the virtual simulator that can reduce the differences in the pilots' psychological effects.

Virtual Environment Modeling for Battery Management System

  • Piao, Chang-Hao;Yu, Qi-Fan;Duan, Chong-Xi;Su, Ling;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1729-1738
    • /
    • 2014
  • The offline verification of state of charge estimation, power estimation, fault diagnosis and emergency control of battery management system (BMS) is one of the key technologies in the field of electric vehicle battery system. It is difficult to test and verify the battery management system software in the early stage, especially for algorithms such as system state estimation, emergency control and so on. This article carried out the virtual environment modeling for verification of battery management system. According to the input/output parameters of battery management system, virtual environment is determined to run the battery management system. With the integration of the developed BMS model and the external model, the virtual environment model has been established for battery management system in the vehicle's working environment. Through the virtual environment model, the effectiveness of software algorithm of BMS was verified, such as battery state parameters estimation, power estimation, fault diagnosis, charge and discharge management, etc.