• Title/Summary/Keyword: Virtual Sensing

Search Result 155, Processing Time 0.033 seconds

A Study on the Early Fire Detection by Using Multi-Gas Sensor (다중가스센서를 이용한 화재의 조기검출에 대한 연구)

  • Cho, Si Hyung;Jang, Hyang Won;Jeon, Jin Wook;Choi, Seok Im;Kim, Sun Gyu;Jiang, Zhongwei;Choi, Samjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • This paper introduced a novel multi-gas sensor detector with simple signal processing algorithm. This device was evaluated by investigating the characteristics of combustible materials using fire-generated smell and smoke. Plural sensors including TGS821, TGS2442, and TGS260X were equipped to detect carbon monoxide, hydrogen gas, and gaseous air contaminants which exist in cigarette smoke, respectively. Signal processing algorithm based on the difference of response times in fire-generated gases was implemented with early and accurately fire detection from multiple gas sensing signals. All fire experiments were performed in a virtual fire chamber. The cigarette, cotton fiber, hair, polyester fiber, nylon fiber, paper, and bread were used as a combustible material. This analyzing software and sensor controlling algorithm were embedded into 8-bit micro-controller. Also the detected multiple gas sensor signals were simultaneously transferred to the personnel computer. The results showed that the air pollution detecting sensor could be used as an efficient sensor for a fire detector which showed high sensitivity in volatile organic compounds. The proposed detecting algorithm may give more information to us compared to the conventional method for determining a threshold value. A fire detecting device with a multi-sensor is likely to be a practical and commercial technology, which can be used for domestic and office environment as well as has a comparatively low cost and high efficiency compared to the conventional device.

Constraint Relaxation using User Interaction in Reactive Scheduling Environment (동적 스케줄링 문제에서 사용자 상호작용을 이용한 제약조건 완화)

  • Lee, Hoon;Jung, Jong Jin;Jo, Geun Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.132-142
    • /
    • 1998
  • In optical scanning holography, 3-D holographic information of an object is generated by 2-D active optical scanning. The optical scanning beam can be a time-dependent Gaussian apodized Fresnel zone plate. In this technique, the holographic information manifests itself as an electrical signal which can be sent to an electron-beam-addressed spatial light modulator for coherent image reconstruction. This technique can be applied to 3-D optical remote sensing especially for identifying flying objects. In this paper, we first briefly review optical scanning holography and analyze the resolution achievable with the system. We then present mathematical expression of real and virtual image which are responsible for holographic image reconstruction by using Gaussian beam profile.

  • PDF

A Study on the Quadcopters Formation Flight Guidance Law Design in Wireless Sensor Network (무선 센서 네트워크를 통한 쿼드콥터들의 편대 비행 기법 설계에 관한 연구)

  • Kim, Eui-hwan;Lee, Hak-soo;Ji, Seong-in;Oh, Young-jun;Lee, Kang-hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.101-104
    • /
    • 2015
  • In this paper, a flight techniques many quadcopters which can be configured flexibly squadron according to the situation in wireless sensor networks is suggested. In previous studies, aircrafts fly only as part of a prescribed form and know the distance between the aircraft by sensor was able to maintain the fleet. Also, the problem occurs that between the aircraft distance is not constant. In this paper, proposes an algorithm that the context of the formation fly using the current position of the quadcopter through a virtual map is based on the relative coordinates without being affected by Indoor, outdoor and obstacles. Proposed algorithm is Leader-Follower Technique that the method of determinin the shape of the squadron to the down command to the sub-quadcopter using the wireless network by the main quadcopter to determine a given situation. As simulation result, the proposed algorithm was confirmed that formation flight efficient in sensing the all conditions as compared to the conventional method.

  • PDF

State-of-the-art 3D GIS: System Development Perspectives

  • Kim, Kyong-Ho;Lee, Ki-Won;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.153-158
    • /
    • 1998
  • Since the mid-1990′s, researches on 3D GIS have been regarded as one of main issues both in the academic sites and commercial vendors; recently, some prototyped systems or the first versioned software systems of commercial basis are being reported and released. Unlike conventional 2D GIS, which consists in intelligent structured GIS or desktop GIS, every 3D GIS has its own distinguished features according to data structure-supporting capability, GIS-styled functionality, external database accessibility, interfacing extents with 2D GIS, 3D visualization/texture mapping ability, and so forth. In this study, technical aspects related to system development, SERI-Web3D GIS ver. 1.2, are explained. Main features in this revised 3D GIS can be summarized: 2-tier system model(client-server), VGFF(Virtual GIS File Format), internal GIS import, Feature manager(zoning, layering, visualization evironment), Scene manager(manage 3D geographic world), Scene editor, Spatial analyzer(Intersect, Buffering, Network analysis), VRML exporter. While, most other 3D GISes or cartographic mapping systems may be categorized into 3D visualization systems handling terrain height-field processing, 2D GIS extension modules, or 3D geometric feature generation system using orthophoto image: actually, these are eventually considered as several parts of "real 3D GIS". As well as these things, other components, especially web-based 3D GIS, are being implemented in this study: Surface/feature integration, Java/VRML linkage, Mesh/Grid problem, LOD(Level of Detail)/Tiling, Public access security problem, 3-tier architecture extension, Surface handling strategy for VRML.

  • PDF

SmartPuck System : Tangible Interface for Physical Manipulation of Digital Information (스마트 퍽 시스템 : 디지털 정보의 물리적인 조작을 제공하는 실감 인터페이스 기술)

  • Kim, Lae-Hyun;Cho, Hyun-Chul;Park, Se-Hyung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.4
    • /
    • pp.226-230
    • /
    • 2007
  • In the conventional desktop PC environment, keyboard and mouse are used to process the user input and monitor displays the visual information as an output device. In order to manipulate the digital information, we move the virtual cursor to select the desired graphical icon on the monitor The cursor represents the relative motion of the physical mouse on the desk. This desktop metaphor does not provide intuitive interface through human sensation. In this paper, we introduce a novel tangible interface which allows the user to interact with computers using a physical tool called "Smartpuck". SmartPuck system bridges the gap between analog perception and response in human being and digital information on the computer. The system consists of table display based on a PDP, SmartPuck equipped with rotational part and button for the user's intuitive and tactile input, and a sensing system to track the position of SmartPuck. Finally, we will show examples working with the system.

Interactive ADAS development and verification framework based on 3D car simulator (3D 자동차 시뮬레이터 기반 상호작용형 ADAS 개발 및 검증 프레임워크)

  • Cho, Deun-Sol;Jung, Sei-Youl;Kim, Hyeong-Su;Lee, Seung-gi;Kim, Won-Tae
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.970-977
    • /
    • 2018
  • The autonomous vehicle is based on an advanced driver assistance system (ADAS) consisting of a sensor that collects information about the surrounding environment and a control module that determines the measured data. As interest in autonomous navigation technology grows recently, an easy development framework for ADAS beginners and learners is needed. However, existing development and verification methods are based on high performance vehicle simulator, which has drawbacks such as complexity of verification method and high cost. Also, most of the schemes do not provide the sensing data required by the ADAS directly from the simulator, which limits verification reliability. In this paper, we present an interactive ADAS development and verification framework using a 3D vehicle simulator that overcomes the problems of existing methods. ADAS with image recognition based artificial intelligence was implemented as a virtual sensor in a 3D car simulator, and autonomous driving verification was performed in real scenarios.

IoT Sensor Flow Control Application System (IoT 센서 흐름 제어 어플리케이션 시스템)

  • Lim, Hyeok;Yu, Dong-Gyun;Jeong, Do-Hyeong;Ryu, Seung-Han;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.887-888
    • /
    • 2016
  • Internet data for IoT(Internet of Things) period was changed in such a way that the data is done by sharing information for the user. However, in the existing system IoT environment for the user to utilize the system it has a problem does not take into account the individual characteristics. And there must be an intermediate vectors are capable of controlling problems such as Dongle. In this paper, through the flow sensor control applications as a way to solve this problem to control the flow of the sensor according to the characteristics desired by the user. Due to this makes it possible to easily manage the sensor compared to conventional IoT environment. Accordingly, the user must manage the sensor through the application regardless of time and place. So it is believed to reduce the unnecessary power consumption is possible effective control sensor.

  • PDF

Case Study of Smart Phone GPS Sensor-based Earthwork Monitoring and Simulation (스마트폰 GPS 센서 기반의 토공 공정 모니터링 및 시뮬레이션 활용 사례연구)

  • Jo, Hyeon-Seok;Yun, Chung-Bae;Park, Ji-Hyeon;Han, Sang Uk
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • Earthmoving operations account for approximately 25% of construction cost, generally executed prior to the construction of buildings and structures with heavy equipment. For the successful completion of earthwork projects, it is crucial to constantly monitor earthwork equipment (e.g., trucks), estimate productivity, and optimize the construction process and equipment on a construction site. Traditional methods however require time-consuming and painstaking tasks for the manual observations of the ongoing field operations. This study proposed the use of a GPS sensor embedded in a smartphone for the tracking and visualization of equipment locations, which are in turn used for the estimation and simulation of cycle times and production rates of ongoing earthwork. This approach is implemented into a digital platform enabling real-time data collection and simulation, particularly in a 2D (e.g., maps) or 3D (e.g., point clouds) virtual environment where the spatial and temporal flows of trucks are visualized. In the case study, the digital platform is applied for an earthmoving operation at the site development work of commercial factories. The results demonstrate that the production rates of various equipment usage scenarios (e.g., the different numbers of trucks) can be estimated through simulation, and then, the optimal number of tucks for the equipment fleet can be determined, thus supporting the practical potential of real-time sensing and simulation for onsite equipment management.

Worker Safety in Modular Construction: Investigating Accident Trends, Safety Risk Factors, and Potential Role of Smart Technologies

  • Khan, Muhammad;Mccrary, Evan;Nnaji, Chukwuma;Awolusi, Ibukun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.579-586
    • /
    • 2022
  • Modular building is a fast-growing construction method, mainly due to its ability to drastically reduce the amount of time it takes to construct a building and produce higher-quality buildings at a more consistent rate. However, while modular construction is relatively safer than traditional construction methods, workers are still exposed to hazards that lead to injuries and fatalities, and these hazards could be controlled using emerging smart technologies. Currently, limited information is available at the intersection of modular construction, safety risk, and smart safety technologies. This paper aims to investigate what aspects of modular construction are most dangerous for its workers, highlight specific risks in its processes, and propose ways to utilize smart technologies to mitigate these safety risks. Findings from the archival analysis of accident reports in Occupational Safety and Health Administration (OSHA) Fatality and Catastrophe Investigation Summaries indicate that 114 significant injuries were reported between 2002 and 2021, of which 67 were fatalities. About 72% of fatalities occurred during the installation phase, while 57% were caused by crushing and 85% of crash-related incidents were caused by jack failure/slippage. IoT-enabled wearable sensing devices, computer vision, smart safety harness, and Augment and Virtual Reality were identified as potential solutions for mitigating identified safety risks. The present study contributes to knowledge by identifying important safety trends, critical safety risk factors and proposing practical emerging methods for controlling these risks.

  • PDF

Estimation of the Convective Boundary Layer Height Using a UHF Radar (UHF 레이더를 이용한 대류 경계층 고도의 추정)

  • 허복행;김경익
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2001
  • The enhancement of the refractive index structure parameter $C_n^2$ often occurs where vertical gradients of virtual potential temperature ${\theta}_v$ and mixing ratio q have their maximum values. The $C_n^2$ can be a very useful parameter for estimating the convective boundary layer(CBL) height. The behavior of $C_n^2$ peaks, often used to locate the height of mixed layer, was investigated in the present study. In addition, a new method to determine the CBL height objectively using both $C_n^2$ and vertical air velocity variance ${\sigma}_w$ data of UHF radar was also suggested. The present analysis showed that the $C_n^2$ peaks in the backscatter intensity profiles often occurred not only at the top of the CBL but also at the top of a residual layer or at a cloud layer. The $C_n^2$ peaks corresponding to the CBL heights were slightly lower than the CBL heights derived from rawinsonde sounding data when vertical mixing owing to weak solar heating was not significant and the height of strong vertical ${\theta}_v$ gradients were not consistent with that of strong vertical q gradients. However, the $C_n^2$ peaks corresponding to the CBL heights were in good agreement with the rawinsonde-estimated CBL hegiths when vertical mixing owing to solar heating was significant and the vertical gradient of both ${\theta}_v$ and q in the entrainment zone was very strong. The maximum backscatter intensity method, which determines the height of $C_n^2$ peak as the CBL height, correctly estimated the CBL height when the $C_n^2$ profile had single peak, but this method erroneously estimated the CBL height when there was a residual layer or a cloud layer over the top of the CBL. The new method distinguished when there the CBL height from the peak due a cloud layer or a residual layer using both $C_n^2$ and ${\sigma}_w$ data, and correctly estimated the CBL height. As for estimation of diurnal variation of the CBL height, the new method backscatter intensity method even if the vertical profile of backscatter intensity had two peaks from the CBL height and a residual layer or a cloud layer.