• 제목/요약/키워드: Virtual Reality Monitoring System

검색결과 35건 처리시간 0.021초

가상현실을 이용한 가스플랜트의 VR Monitoring System 개발 (Development of VR Monitoring System for Gas Plant)

  • 서명원;조기용;박대유
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.213-218
    • /
    • 2001
  • VR (Virtual reality) technologies have given engineers the ability to design, test, and evaluate engineering systems in a virtual environment. The virtual plant is the highlight of the application of the VR technology to plant engineering. Plant design, maintenance, control, management, operation are integrated in the virtual plant. The VR monitoring system including the concept of the virtual plant is developed to replace a current control room that has number of gages and warning lamps in two-dimensional panels which shows the operating status of a plant. The operating status of the plant is displayed in the VR monitoring system through the realistic computer graphics. Sophisticated, realistic and prompt control becomes possible. The VR monitoring system consists of advanced visualization, walk-through simulation and navigation. In the virtual environment, a user can navigate and interact with each component of a plant. In addition, the user can access the information by just clicking interesting component. The VR monitoring system is operated with various modules, such as (1) virtual plant constructed with Graphic Management System (GMS), (2) Touch & Tell System, and (3) Equipment DB System of Part. In order to confirm the usefulness of the VR monitoring system, a pilot gas plant which is currently being used for plant operator training is taken as application. The end of the paper gives an outlook on the future work and a brief conclusion.

  • PDF

가상현실을 이용한 가스플랜트의 VR Monitoring System 개발 (Development of VR Monitoring System for Gas Plant)

  • 서명원;조기용
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.788-796
    • /
    • 2001
  • VR(Virtual reality) technologies have given engineers the ability to design, test, and evaluate engineering systems in a virtual environment. The virtual plant is the highlight of the application of the VR technology to plant engineering. Plant design, maintenance, control, management, operation are integrated in the virtual plant. The VR monitoring system including the concept of the virtual plant is developed to replace a current control room that has number of gages and warning lamps in two-dimensional panels which shows the operating status of a plant. The operating status of the plant is displayed in the VR monitoring system through the realistic computer graphics. Sophisticated, realistic and prompt control becomes possible. The VR monitoring system consists of advanced visualization, walk-through simulation and navigation. In the virtual environment, a user can navigate and interact with each component of a plant. In addition, the user can access the information by just clicking interesting component. The VR monitoring system is operated with various modules, such as (1) virtual plant constructed with Graphic Management System (GMS), (2) Touch & Tell System, and (3) Equipment DB System of Part. In order to confirm the usefulness of the VR monitoring system, a pilot gas plant which is currently being used for plant operator training is taken as application. The end of the paper gives an outlook on the future work and a brief conclusion.

무선 통신망을 활용한 VR 시뮬레이션 관제상황 검증 시스템에 관한 연구 (A Study on the Virtual Reality Simulation Monitoring Verification System Available Wireless Communication Network)

  • 이양선;강희조
    • 디지털콘텐츠학회 논문지
    • /
    • 제7권3호
    • /
    • pp.193-197
    • /
    • 2006
  • 본 논문에서는 무선 통신망과 향후 발전 가능성이 예상되는 가상현실 기술을 이용하여 특수환경에 적용되는 관제분야에서 사고상황 검증 및 사후 교육용도로 적용이 가능한 가상현실 시뮬레이션 기법을 이용한 관제상황 검증 시스템을 제안하였다. 또한, 제안 시스템의 정의와 동작원리를 살펴보고 제안 시스템에서 요구되는 기술사항에 관하여 분석하였다. 본 논문에서 제안한 무선 통신망을 활용한 관제상황 검증 시스템은 이동 전동차량의 기관실 모니터링 뿐만 아니라 의료분야 혹은 특수 위험물 처리를 수행하는 관제실에서도 그 적용이 가능하리라 예상된다.

  • PDF

인터넷 가상 현실 기반 원격 제어 및 감시 시스템과 통합 개발 환경의 구현 (Internet Virtual Reality-based Remote Control and Monitoring System and Implementation of Integrated Development Environment)

  • 임현우;김영모
    • 한국정보처리학회논문지
    • /
    • 제6권11S호
    • /
    • pp.3243-3250
    • /
    • 1999
  • There are many problems to be satisfied the various commercial demand in the present VRML node, and the VRML-based system by the contact with other technology is burdened with the direct participation of developer related with it. In this study, remote control and monitoring system using EAI(External Authoring Interface) is reposed to overcome the limit of VRML. In other words, This study is about mechanism of interaction between control and monitoring subject in real world and object in virtual world mapped with it. Object oriented method by one to one mapping of the Java class which have VRML virtual world and the object control is proposed. Introduction method of video monitoring through method of image synthesis and the integrated development environment is described. Finally automobile-gate control system based on the development method of Internet virtual reality-based system which is proposed in this study is described.

  • PDF

가상현실 지능형 차량 시뮬레이터를 위한 실시간 다물체 차량 동역학 및 제어모델 (A Real-time Multibody Vehicle Dynamics and Control Model for a Virtual Reality Intelligent Vehicle Simulator)

  • 김성수;손병석;송금정;정상윤
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a real-time multibody vehicle dynamics and control model has been developed for a virtual reality intelligent vehicle simulator. The simulator consists of low PCs for a virtual reality visualization system, vehicle dynamics and control analysis system a control loading system, and a network monitoring system. Virtual environment is created by 3D Studio Max graphic tool and OpenGVS real-time rendering library. A real-time vehicle dynamics and control model consists of a control module based on the sliding mode control for adaptive cruise control and a real-time multibody vehicle dynamics module based on the subsystem synthesis method. To verify the real-time capability of the model, cut-in, cut-out simulations have been carried out.

A Smartphone-based Virtual Reality Visualization System for Human Activities Classification

  • Lomaliza, Jean-Pierre;Moon, Kwang-Seok;Park, Hanhoon
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.45-46
    • /
    • 2018
  • This paper focuses on human activities monitoring problem using onboard smartphone sensors as data generator. Monitoring such activities can be very important to detect anomalies and prevent disease from patients. Machine learning (ML) algorithms appear to be ideal approaches to use for processing data from smartphone to get sense of how to classify human activities. ML algorithms depend on quality, the quantity and even more important, the properties or features, that can be learnt from data. This paper proposes a mobile virtual reality visualization system that helps to view data representation in a very immersive way so that its quality and discriminative characteristics may be evaluated and improved. The proposed system comes as well with a handy data collecting application that can be accessed directly by the VR visualization part.

  • PDF

옥외 증강현실을 위한 관측점 트래킹 시스템 구현 (Implementation of View Point Tracking System for Outdoor Augmented Reality)

  • 최태종;김정국;허웅;장병태
    • 전자공학회논문지SC
    • /
    • 제41권4호
    • /
    • pp.45-54
    • /
    • 2004
  • 한글 본 논문에서는 개방된 광역을 대상으로 하는 옥외 증강현실을 위한 관측점 트래킹 시스템을 구현하였다. 옥외용 증강현실 시스템은 관측점이 이동하면 주위환경이 변하기 때문에 이동체의 위치와 관측시점의 위치를 트래킹 해야만 실제영상과 가상영상의 정확한 정합이 가능하다. 따라서 옥외용 증강현실의 전역 트래킹은 이동체의 위치와 방향을 추적하는 시스템이므로 GPS를 응용하여 구현하였다. 지역 트래킹 시스템은 이동할 때 현재 위치에서 이동체 내부의 사용자가 바라보는 시점의 변화를 추적하기 위한 장치이므로 제한된 영역에서 시점 트래킹이 가능한 광학식 위치 추적 시스템을 사용하여 구현하였다. 따라서 본 논문은 실제 영상과 실시간으로 트래킹된 가상정보를 정합함으로서 제한적이지만 옥외용 증강현실 시스템의 응용분야에 적용 가능성을 보였다.

A 3D GUI System for Controlling Agent Robots

  • Hyunsik Ahn;Kang, Chang-Hoon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.848-851
    • /
    • 2002
  • Recently, there are lots of concerning on the integration of robot and virtual reality with the trends of the research of intelligent robot and mined reality. In this paper, a 3D GUI system is proposed based on Internet for remote controlling and monitoring of agent robot working for itself. The proposed system is consists of a manager ordering a new position and displaying the motion of robot, an agent robot moving to the destination according to the indication, a positioning module detecting the current position of robot, and a geographical information module. A user can order the robot agent move to a new position in a virtual space and watch the real images captured from the real sites of the robot. Then, the agent robot moves to the position automatically with avoiding collision by using range finding and a path detection algorithm. We demonstrate the proposed 3D GUI system is supporting a more convenient remote control means far the robots.

  • PDF

Three Dimensional Indoor Location Tracking Viewer

  • Yang, Chi-Shian;Jung, Sang-Joong;Chung, Wan-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권1호
    • /
    • pp.108-118
    • /
    • 2009
  • In this paper we develop an indoor location tracking system and its 3D tracking monitoring viewer, viz., 3D Navigation Viewer (3DNV). We focus on the integration of an indoor location tracking system with the Virtual Reality Modeling Language (VRML), to facilitate a representation of the user's spatial information in virtual indoor environments that is synchronized with the physical location environment. The developed indoor location tracking system employs beacons as active transmitters, and a listener as a passive receiver. The distance information calculated from the difference speeds of RF and Ultrasonic signals is exploited, to determine the user's physical location. This is essential in supporting third parties like doctors and caregivers in identifying the activities and status of a particular individual via 3DNV. 3DNV serves as a unified user interface for an indoor location tracking system, showing the viewpoint and position of the target in virtual indoor environments. It was implemented using VRML, to provide an actual real time visualization of the target's spatial information.

모바일 증강현실 기반 사출성형공정 관리시스템 (An Injection Molding Process Management System based on Mobile Augmented Reality)

  • 홍원표;송준엽
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.591-596
    • /
    • 2014
  • Augmented reality is a novel human-machine interaction that overlays virtual computer-generated information on a real world environment. It has found good potential applications in many fields, such as training, surgery, entertainment, maintenance, assembly, product design and other manufacturing operations. In this study, a smartphone-based augmented reality system was developed for the purpose of monitoring and managing injection molding production lines. Required management items were drawn from a management content analysis, and then the items were divided into two broad management categories: line management and equipment management. Effective work management was enabled by providing those working on the shop floor with management content information combined with the actual images of an injection molding production line through augmented reality.