• Title/Summary/Keyword: Virtual Prototyping

Search Result 102, Processing Time 0.033 seconds

Application of practical education program of sensor instrumentation engineering using NI-ELVIS (NI-ELVIS를 활용한 센서계측공학의 실습교육 사례)

  • Lee, Byeung-Leul;Lee, Yong-Hee
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • In this paper we suggest an effective teaching plan for measurement engineering by utilizing the NI-ELVIS(National Instrument Educational Laboratory Virtual Instrumentation Suite). ELVIS is a development platform for LabVIEW-based design and prototyping environment. It consists of LabVIEW-based virtual instruments, a multifunctional data acquisition device, and a custom-designed benchtop workstation and prototyping board. Therefore it can replace the expensive instruments for the effective education in the area of electrical engineering. This platform can be applicable for the sensor instrumentation engineering study, though it is a multidisciplinary learning including electrical engineering, sensor technology, signal processing and data analysis. We hope this approach can be used for the other educational area related the electrical experimental education.

  • PDF

Haptic Effects Design for Haptic Dial System (햅틱 다이얼 시스템에서의 햅틱 효과 디자인)

  • Shin, Sang-Kyun;Kim, Lae-Hyun;Han, Man-Chul;Cho, Hyun-Chul;Park, Se-Hyung
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.335-339
    • /
    • 2009
  • The purpose of this study is to propose a new Haptic Dial System (HDS) for Virtual Prototyping by developing upgraded systems and various Haptic effects. The Haptic Effect Design (HED) which gives users sensations like handling actual products has a function of controlling loudness by force and changing Haptic effects on GUI windows in real-time. In addition, the HED has another function of editing intervals to express Haptic effects as graphical force and notch on windows. Many kind of dial knob can be attached and removed easily for testing the performance of actual product designs. The HDS can be remotecontrolled through giving and taking the information between motor part and GUI part with TCP communication. The HDS can be applied to the output devices of Haptic effects as well as input-interfaces.

  • PDF

Modeling, Simulation and Development of an Automatic Vacuum Packer for Rice Using Functional Virtual Prototyping (기능적 가상 시작기 기술을 이용한 자동 벨 진공포장기의 모델링, 시뮬레이션 및 개발)

  • Yan, T.Y.;Chung, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.233-242
    • /
    • 2004
  • 본 연구의 주요 목적은 자동 쌀 진공포장기의 3차원 기능적 가상시작기 모델을 개발하여 포장기의 구동시스템을 설계하고 개발하고자 하였다. 개발한 3차원 가상시작기는 주로 압축판부, 테이프부착부 및 진동판부로 구성되었다. 가상시작기의 민감도 분석을 수행하기 위해 제품포대의 두께변수를 이용하여 3차원 가상시작기를 파라미터화하였다 자동 진공포장기의 최대 처리능력 6포/분, 포대규격: 45cm${\times}$35cm을 충족하기 위해 각 주요부를 구동하는 모터 작동제어로직(motion control function)을 적절하게 설계하였다. 설계한 작동제어로직에 의하여 각 모터를 구동할 때 필요로 하는 적정 동력은 각각 100W, 25W 및 90W로 결정하였다. 연구결과를 요약하면 다음과 같다. 자동 진공포장기의 실제 시작기를 제조한 후 설계한 작동제어로직을 각 구동모터에 적용하여 시뮬레이션의 결과를 검증하였다. 개발한 3차원 가상시작기 모델을 시뮬레이션하여 선정한 모터들은 각 주요부를 원활하게 구동할 수 있었다. 제안한 작동제어로직은 주요부의 요구된 작동 시권스를 만족시켰으며 이때 자동진공포장기의 처리능력은 6.7 포/분이었다. 개발한 자동 쌀 진공포장기의 포장성공률은 92.6%이었다.

Web-based 3D Virtual Experience using Unity and Leap Motion (Unity와 Leap Motion을 이용한 웹 기반 3D 가상품평)

  • Jung, Ho-Kyun;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.159-169
    • /
    • 2016
  • In order to realize the virtual prototyping (VP) of digital products, it is important to provide the people involved in product development with the appropriate visualization and interaction of the products, and the vivid simulation of user interface (UI) behaviors in an interactive 3D virtual environment. In this paper, we propose an approach to web-based 3D virtual experience using Unity and Leap Motion. We adopt Unity as an implementation platform which easily and rapidly implements the visualization of the products and the design and simulation of their UI behaviors, and allows remote users to get an easy access to the virtual environment. Additionally, we combine Leap Motion with Unity to embody natural and immersive interaction using the user's hand gesture. Based on the proposed approach, we have developed a testbed system for web-based 3D virtual experience and applied it for the design evaluation of various digital products. Button selection test was done to investigate the quality of the interaction using Leap Motion, and a preliminary user study was also performed to show the usefulness of the proposed approach.

Measurements of 3D Model Shapes for Reverse Designs (역설계를 위한 3차원 모델형상 측정)

  • Doh, Deog-Hee;Cho, Kyeong-Rae;Cho, Yong-Beom
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • Reverse Design(RD) plays an important role in simulation engineering, such as CFD (Computational Fluid Dynamics) and Virtual Engineering and Design. RD becomes much more valuable when there is no shape data of the practical models for CFD grid generations. In this study, two-camera based rapid prototyping(RP) system is proposed. 3D-PTV based measurement algorithm was adopted. The developed system was applied to reconstruct three-dimensional data of a human face, a motorcycle model, a cylindrical body and a triangular pyramid.

Development of a Real-time Driving Simulator for ACC(Adaptive-Cruise-Control) Performance Evaluation (적응 순항 제어기 성능 평가를 위한 실시간 차량 시뮬레이터 개발)

  • Han, Dong-Hoon;Yi, Kyong-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.28-34
    • /
    • 2006
  • An ACC driving simulator is a virtual reality device which designed to test or evaluate vehicle control algorithm. It is designed and built based on the rapid control prototyping(RCP) concept. Therefore this simulator adopt RCP tools to solve the equation of a vehicle dynamics model and control algorithm in real time, rendering engine to provide real-time visual representation of vehicle behavior and CAN communication to reduce networking load. It can provide also many different driving test environment and driving scenarios.

VR 기법을 적용한 자동차 HMI Usability Test simulator 설계에 관한 연구

  • Yoo, Seung-Dong;Jung, Yoon;Park, Beom
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.26-30
    • /
    • 1997
  • 현대 사회는 사용자의 Needs가 중요시 되는 사회이다. 따라서 모든 생산 활동은 사용자의 욕구와 감성에 부합하는 제품의 생산에 초점이 맞춰져 있다. 특히, 자동차 분야에서는 사용자의 욕구와 인간 공학적인 측면을 얼마나 잘 반영하는 차를 만들어 내는가가 점차 중요한 요소로서 부각되어지고 있다. 하지만 이들에 대한 Usability test를 위해 실제 Prototyping을 하는데는 많은 액수의 비용이 들게 된다. 본 논문에서는 이러한 비용적 측면과 재사용성 측면을 고려하여, 사용자의 감성에 부합하는 자동차를 만들기 위해 필요한 Usability test를 위해 Virtual reality 기법을 적용한 Simulator(VISVEC : Virtual Simulator for Vehicle Cockpit)를 설계하였다. 그 중, 본 Simulator 상에서 Instrument panel을 중심으로 HMD를 이용한 display시 보다 정확한 Interaction을 위해 Virtual Environment 내에서 보다 빠른 Display 화면 갱신과 사용자의 Object 인지에 영향을 끼치는 Level of detail의 설계에 관해 연구하였다.

  • PDF

Virtual Prototyping of Automated System for Adjustable Row Spacing of Hydroponic Gullies in Multilayer Plant Factory

  • Ashtiani-Araghi, Alireza;Lee, Chungu;Cho, Seong-In;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.35-46
    • /
    • 2015
  • Purpose: To present a flexible and accurate autonomous solution for creating any desired row spacing value between the hydroponic gullies in multilayer growing units, and evaluate the capabilities and performance of the relevant automated system through the use of virtual prototyping technique. Methods: To build the virtual prototype of the system, CAD models of its different parts, including an autonomous vehicle and the mechanical mechanisms embedded in the multilayer growing unit, were developed and imported into the RecurDyn simulation software. In order to implement the automated row spacing operation, three spacing modes with different loading cycles and working steps were defined, and the operation of the system was simulated to obtain the target row spacing values specified for each of these modes. Results: Motion profiles related to the horizontal displacement of: 1) the lower and upper sliding bars installed in the cultivation layers, and 2) the hydroponic gullies, during the simulation of the system operation, were generated and analyzed. No deviation from the specified target spacing values was observed at the end of simulations for all spacing modes. Conclusions: The results of the motion analysis obtained by simulating the system operation confirm the effectiveness of the control scheme proposed for automated row spacing of gullies. It was also found that proper sequencing of the loading cycles and the precision of the working strokes of the upper bars are the critical factors for establishing a certain row spacing value. Based on the simulation results, precise control of the back and forth motions of the upper bars is highly necessary for sound operation of the real system.

Collaborative Maintenance Simulation System Using Virtual Mockup (가상목업을 활용한 협업 정비 시뮬레이션 시스템)

  • Lee, Jun-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.148-165
    • /
    • 2012
  • Applying maintenance simulation using virtual mockup in product design phase enables maintainability test before prototyping physical products, and it is expected to reduce product development costs. The simulation results can be reused as contents of service manuals and RAM (Reliability, Availability, Maintainability) analysis data. Maintenance simulation should provide realistic representation of physical property of virtual product, assembly relation between parts and manipulation process to verify feasibility of product design. The simulation system should be extended to collaborative virtual environment to perform collaborative maintenance procedures. In this paper, the three layered system architecture and the physics based collaborative interaction technique are proposed to extend current maintenance simulation into collaborative virtual environment. The proposed system was implemented as ViMMS (Virtual Mockup Maintenance Simulation system), and compared with case study results of VADE (Virtual Assembly Design Environment). As a result, the ViMMS encompassed broader range of maintenance tasks by using physics based collaborative interaction technique.