• Title/Summary/Keyword: Virtual Manufacturing

Search Result 439, Processing Time 0.024 seconds

A Study on Feature-Based Multi-Resolution Modelling - Part II: System Implementation and Criteria for Level of Detail (특징형상기반 다중해상도 모델링에 관한 연구 - Part II: 시스템 구현 및 상세수준 판단기준)

  • Lee K.Y.;Lee S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.444-454
    • /
    • 2005
  • Recently, the requirements of multi-resolution models of a solid model, which represent an object at multiple levels of feature detail, are increasing for engineering tasks such as analysis, network-based collaborative design, and virtual prototyping and manufacturing. The research on this area has focused on several topics: topological frameworks for representing multi-resolution solid models, criteria for the level of detail (LOD), and generation of valid models after rearrangement of features. As a solution to the feature rearrangement problem, the new concept of the effective zone of a feature is introduced in the former part of the paper. In this paper, we propose a feature-based non-manifold modeling system to provide multi-resolution models of a feature-based solid or non-manifold model on the basis of the effective feature zones. To facilitate the implementation, we introduce the class of the multi-resolution feature whose attributes contain all necessary information to build a multi-resolution solid model and extract LOD models from it. In addition, two methods are introduced to accelerate the extraction of LOD models from the multi-resolution modeling database: the one is using an NMT model, known as a merged set, to represent multi-resolution models, and the other is storing differences between adjacent LOD models to accelerate the transition to the other LOD. We also suggest the volume of the feature, regardless of feature type, as a criterion for the LOD. This criterion can be used in a wide range of applications, since there is no distinction between additive and subtractive features unlike the previous method.

A Proposal for Prototype-Free Production Preparation Processes Utilizing 3DCG Animations

  • Shinoda, Shinji;Shimozawa, Kazuhiro;Niwa, Akira;Kawase, Takeshi;Matsumoto, Toshiyuki;Mizumachi, Tadahiro
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.2
    • /
    • pp.109-120
    • /
    • 2009
  • As the use of 3DCAD data became widespread in designing products in manufacturing, attempts have been made to shorten lead time and reduce cost of production preparation utilizing 3DCAD data for launching assembly lines. In order to create assembly plans not only efficient but easy for operators to operate ('easy-to-operate'), this study presents approaches, methods, and systems for creating 3DCGAs (3 Dimensional Computer Graphic Animations) which automatically utilize a prototype-free production preparation methodology. Characteristics of this study include that it proposes the methodology for creating assembly operation 3DCGAs automatically, for all the possible assembly operations corresponding each of the possible assembly sequences first. Using the created 3DCGAs, the study next considers assembly methods by evaluating how easy or 'operator friendly' they are in implementing, and devises tools or jigs to be used, and plans efficient assembly line organization. The concept of the methodology was formed by focusing on the value-adding assembly steps at which parts turn into products directly. The study also validates the effectiveness of the presented methodology by employing the methods used in actual production preparation process in businesses, and proves that an efficient assembly line can be organized in a shorter period of time utilizing the developed system and by preparing easy-to-operate and efficient plans in 3DCGAs at the design stage.

End-mill Modeling and Manufacturing Methodology via Cutting simulation (Cutting simulation을 이용한 End-milling cutter의 모델링 및 제작에 관한 연구)

  • Kim J.H.;Park S.J.;Kim J.H.;Park J.W.;Ko T.J.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.456-463
    • /
    • 2005
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data fur fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data fer machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used fur virtual cutting test and analysis as well.

  • PDF

An Extended I-O Modeling Methodology based on FSM (유한상태기계에 기반한 확장된 I-O 모델링 방법론)

  • Oh, Soo-Yeon;Wang, Gi-Nam;Kim, Ki-Hyung;Kim, Kangseok
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • Recently manufacturing companies have used PLC control programs popularly for their automated production systems. Since the life cycle of production process is not so long, the change of the production lines occur frequently. Most of changes happen with modification of the position information and control process of the equipment. PLC control program is also modified based on the fundamental process. Therefore, to verify new PLC program by configuring virtual space according to real environment is needed. In this paper we show a logical modeling method, based on Timed-FSA useful for sequence control and dead-lock prevention. There is a problem wasting user's labor and time when defining a variety of states in a device. To overcome this problem, we propose an extended I-O model based on existing methods by adding a token concept of Petri Nets. Also we will show the usability of the extended I-O modeling through user study.

Full mouth rehabilitation of a worn dentition using digital guided tooth preparation: a case report (과도한 구치부 마모를 보이는 환자에서 digital guided tooth preparation을 이용한 완전 구강 회복 증례)

  • Kim, Yong-Kyu;Yeo, In-Sung Luke;Yoon, Hyung-In;Lee, Jae-Hyun;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.1
    • /
    • pp.80-90
    • /
    • 2022
  • With the development of digital dentistry, it is being applied in various ways of dental treatment. This case report presents the definitive prosthesis designed in advance with a re-established vertical dimension and the digital technology, which determined the amount of tooth preparation, in order to preserve as much tooth structure as possible in a patient with pathological wear of the posterior teeth and loss of vertical dimension. For accurate tooth preparation, the guides of the occlusal and axial surfaces were digitally and additively manufactured. Then, aesthetics and anterior guidance were established at the provisional stage. The information of the provisional restoration was delivered to the definitive stage by double scanning. The digital technology, including the virtual planning and the guided tooth removal, produced the definitive restorations satisfactory to both the patient and clinician.

CAD-CAM technique based digital diagnosis and fixed partial denture treatment on maxillary congenital missing teeth with skeletal class III tendency patient: A case report (상악 선천성 결손과 하악 골격성 제3급 부정교합 경향성을 보이는 환자에게서 CAD-CAM 기법을 이용한 진단과 고정성 보철 수복 증례 보고)

  • Oh, SaeEun;Park, YoungBum;Park, JaeHan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.4
    • /
    • pp.354-361
    • /
    • 2022
  • The development of digital technology is causing great changes in dentistry. This digital workflow combines various 3D data in the prosthetic treatment area for diagnosis and prosthetic manufacturing. The planned diagnosis and the fabrication of prosthesis in a virtual patient formed by synthesizing digital data can simulate the results of prosthetic treatment more intuitively than conventional methods, thereby increasing the predictability of aesthetic prosthetic treatment. In this case report, functionally and aesthetically satisfied clinical results were obtained by fabricating a fixed partial dentures through a digital workflow on congenital missing teeth in the maxillary anterior region.

Digital Twin Model Design And Implementation Using UBS Process Data (UBS공정 데이터를 활용한 디지털트윈 모델 설계 및 구현)

  • Park, Seon-Hui;Bae, Jong-Hwan;Ko, Ho-Jeong
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.3
    • /
    • pp.63-68
    • /
    • 2022
  • Due to COVID-19, many paradigm shifts in existing manufacturing facilities and the expansion of non-face-to-face services are accelerating worldwide. A representative technology is digital twin technology. Such digital twin technology, which existed only conceptually in the past, has recently become feasible with the construction of a 5G-based network. Accordingly, this paper designed and implemented a part of the USB process to enable digital twins based on OPC UA communication, which is a standard interlocking structure, between real object objects and virtual reality-based USB process in accordance with this paradigm change. By reflecting the physical characteristics of real objects together, it is possible to simulate real-time synchronization of these with real objects. In the future, this can be applied to various industrial fields, and it is expected that it will be possible to reduce costs for decision-making and prevent dangerous accidents.

Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions

  • Mimoun Bennedjadi;Salem Mohammed Aldosari;Abdelbaki Chikh;Abdelhakim Kaci;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdeldjebbar Tounsi;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.159-177
    • /
    • 2023
  • In the present work, a simple and refined shear deformation theory is used to analyze the effect of visco-elastic foundation on the buckling response of exponentially-gradient sandwich plates under various boundary conditions. The proposed theory includes indeterminate integral variables kinematic with only four generalized parameters, in which no shear correction factor is used. The visco-Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The four governing equations for FGM sandwich plates are derived by employing principle of virtual work. To solve the buckling problem, Galerkin's approach is utilized for FGM sandwich plates for various boundary conditions. The analytical solutions for critical buckling loads of several types of powerly graded sandwich plates resting on visco-Pasternak foundations under various boundary conditions are presented. Some numerical results are presented to indicate the effects of inhomogeneity parameter, elastic foundation type, and damping coefficient of the foundation, on the critical buckling loads.

Effect of angulation on the 3D trueness of conventional and digital implant impressions for multi-unit restorations

  • Ozay Onoral;Sevcan Kurtulmus-Yilmaz;Dilem Toksoy;Oguz Ozan
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.6
    • /
    • pp.290-301
    • /
    • 2023
  • PURPOSE. The study aimed to determine the influence of implant angulation on the trueness of multi-unit implant impressions taken through different techniques and strategies. MATERIALS AND METHODS. As reference models, three partially edentulous mandibular models (Model 1: No angulation; Model 2: No angulation for #33, 15-degree distal angulation for #35 and #37; Model 3: No angulation for #33, 25-degree distal angulation for #35 and #37) were created by modifying the angulations of implant analogues. Using a lab scanner, these reference models were scanned. The obtained data were preserved and utilized as virtual references. Three intraoral scanning (IOS) strategies: IOS-Omnicam, ISO-Quadrant, and IOS-Consecutive, as well as two traaditional techniques: splinted open tray (OT) and closed tray (CT), were used to create impressions from each reference model. The best-fit alignment approach was used to sequentially superimpose the reference and test scan data. Computations and statistical analysis of angular (AD), linear (LD), and 3D deviations (RMS) were performed. RESULTS. Model type, impression technique, as well as interaction factor, all demonstrated a significant influence on AD and LD values for all implant locations (P < .05). The Model 1 and SOT techniques displayed the lowest mean AD and LD values across all implant locations. When considering interaction factors, CT-Model 3 and SOT-Model 1 exhibited the highest and lowest mean AD and LD values, respectively. Model type, impression technique, and interaction factor all revealed significant effects on RMS values (P ≤ .001). CT-Model 3 and SOT-Model 1 presented the highest and lowest mean RMS values, respectively. CONCLUSION. Splinted-OT and IOS-Omnicam are recommended for multi-unit implant impressions to enhance trueness, potentially benefiting subsequent manufacturing stages.

State-of-the-Art in Cyber Situational Awareness: A Comprehensive Review and Analysis

  • Kookjin Kim;Jaepil Youn;Hansung Kim;Dongil Shin;Dongkyoo Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1273-1300
    • /
    • 2024
  • In the complex virtual environment of cyberspace, comprised of digital and communication networks, ensuring the security of information is being recognized as an ongoing challenge. The importance of 'Cyber Situation Awareness (CSA)' is being emphasized in response to this. CSA is understood as a vital capability to identify, understand, and respond to various cyber threats and is positioned at the heart of cyber security strategies from a defensive perspective. Critical industries such as finance, healthcare, manufacturing, telecommunications, transportation, and energy can be subjected to not just economic and societal losses from cyber threats but, in severe cases, national losses. Consequently, the importance of CSA is being accentuated and research activities are being vigorously undertaken. A systematic five-step approach to CSA is introduced against this backdrop, and a deep analysis of recent research trends, techniques, challenges, and future directions since 2019 is provided. The approach encompasses current situation and identification awareness, the impact of attacks and vulnerability assessment, the evolution of situations and tracking of actor behaviors, root cause and forensic analysis, and future scenarios and threat predictions. Through this survey, readers will be deepened in their understanding of the fundamental importance and practical applications of CSA, and their insights into research and applications in this field will be enhanced. This survey is expected to serve as a useful guide and reference for researchers and experts particularly interested in CSA research and applications.