• Title/Summary/Keyword: Virtual Design/Analysis

Search Result 734, Processing Time 0.023 seconds

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

Analysis of Intervention in Activities of Daily Living for Stroke Patients in Korea: Focusing on Single-Subject Research Design (국내 뇌졸중 환자를 대상으로 한 일상생활활동 중재 연구 분석: 단일대상연구 설계를 중심으로)

  • Sung, Ji-Young;Choi, Yoo-Im
    • Therapeutic Science for Rehabilitation
    • /
    • v.13 no.1
    • /
    • pp.9-21
    • /
    • 2024
  • Objective : The purpose of this study was to confirm the characteristics and quality of a single-subject research that conducted interventions to improve activities of daily living (ADL) in stroke patients. Methods : 'Stroke,' 'activities of daily living,' and 'single-subject studies' were searched as keywords among papers published in the last 15 years between 2009 and 2023 among Research Information Sharing Service, DBpia, and e-articles. A total of nine papers were examined for the characteristics and quality before analysis. Results : The independent variables applied to improve ADL included constraint-induced therapy, mental practice for performing functional activities, virtual reality-based task training, subjective postural vertical training without visual feedback, bilateral upper limb movement, core stability training program, traditional occupational therapy and neurocognitive rehabilitation, smooth pursuit eye movement, neck muscle vibration, and occupation-based community rehabilitation. Assessment of Motor and Process Skills was the most common evaluation tool for measuring dependent variables, with four articles, and Modified Barthel Index and Canadian Occupational Performance Measure were two articles each. As a result of confirming the qualitative level of the analyzed papers, out of a total of nine studies, seven studies were at a high level, two at a moderate level, and none were at a low level. Conclusion : Various types of rehabilitation treatments have been actively applied as intervention methods to improve the daily life activities of stroke patients; the quality level of single-subject studies applying ADL interventions was reliable.

Development and evaluation of Pre-Parenthood Education Program for high school students based on Home Economics subject (고등학생을 위한 가정교과 기반 예비부모교육 프로그램 개발 및 평가)

  • Noh, Heui-Yeon;Cho, Jae Soon;Chae, Jung Hyun
    • Journal of Korean Home Economics Education Association
    • /
    • v.29 no.4
    • /
    • pp.161-193
    • /
    • 2017
  • The purpose of this study was to develop and evaluate pre-parenthood education program(PPEP) based on Home Economics(HE) subject for high school students. The development and evaluation of PPEP based on HE subject in this study followed ADDIE model except implementation through 4 processes such as analysis, design, development, and evaluation. First, program development directions were set in three aspects such as 'general development', 'contents', and 'teaching and learning methods'. Themes of the program are 11 in total such as '1. Parenting, what is being a parent', '2. Choosing your spouse, happy marital relationship, the best gift to your children', '3. Pregnancy and birth, a moving meeting with a new life', '4. Taking care of a new born infant for 24 hours', '5. Taking care of infants, relationship with my lovely baby, attachment', '6. Taking care of young children, my child from another planet', '7. Parents and children in healthy family', '8. Parent-child relationship, wise parents to make effective interaction with their children', '9. Parents safety manager at home,', '10. Practice to take care of infants', and '11. Practice of community nurturing support service development'. In particular, learning activities of the program have major characteristics such as 1) utilization of cases including practice problems related to parenting, 2) community exchange activities utilizing learned knowledge and techniques, 3) actual life project activities utilizing learning contents related with parenting, 4) activities inducing positive changes in current life of high school students, and 5) practice activities for the necessities of life such as food, clothing and shelter supporting development of children. Second, the program was developed according to the design. Teaching-learning plans and materials for 17 classes were developed according to 11 themes. The developed plans include class flow and teacher's reference. It starts with receiving a class-related message from a virtual child at the introduction stage and ended with replying to the message by summarizing contents of the class and making a promise as a parent-to-be. That is the basic frame of class flow. Learning materials included various plans and reports necessary for learning activities and they are prepared in details so that they can be play the role of textbooks in regular curriculum. Third, evaluation of developed program was executed by a 5 point Likert scale survey on 13 HE experts on two aspects of program development process and program development results. In the evaluation of development process, mean value was 4.61 and index of content validity was 97.4%. For development results, mean value was 4.37 and index of content validity was 86.9%. These values showed that validity in the development process and results in this study was highly secured and confirmed that PPEP based on HE was appropriate and valid to enhance parent qualifications of high school learners.