• Title/Summary/Keyword: Virtual Data

Search Result 2,777, Processing Time 0.039 seconds

Workflow Procedures and Applications in BIM-based Design for Safety (DfS) (BIM 기반 설계안전성검토의 업무 절차와 활용 방안에 관한 연구)

  • Jaewoong Hwang;Heetaek Yoon;Junhyun Bae;Youngkon Park
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • A conventional Design for Safety (DfS), introduced to eliminate potential hazards in the design phase proactively, has encountered persistent challenges, such as perfunctory risk assessments and hazard identifications based on 2D drawings and inefficient workflow processes. This study proposes a BIM-based approach to Design for Safety (DfS) to address the limitations of conventional methods, aiming to enhance efficiency and achieve practical safety management benefits. The proposed workflow process for BIM-based DfS has been refined and validated for on-site applicability through various case studies, including risk assessments during the design phase and field applications for safety management activities during the construction phase. Specifically, the critical process of risk assessment within the DfS methodology has also been transitioned to a BIM-based approach. This BIM-based risk assessment process has been evaluated through case studies, encompassing safety reviews for structural design, construction equipment operation, and construction methodology with sequence in design projects. Additionally, the proposed BIM-based DfS has demonstrated exceptional on-site applicability and efficiency, as validated by the application of a BIM deliverable embedded in DfS information for CDE-based daily activity briefing, VR-based safety training, AR-based mitigation measures inspections, and other safety management activities in the construction phase.

Radiologic assessment of the optimal point for tube thoracostomy using the sternum as a landmark: a computed tomography-based analysis

  • Jaeik Jang;Jae-Hyug Woo;Mina Lee;Woo Sung Choi;Yong Su Lim;Jin Seong Cho;Jae Ho Jang;Jea Yeon Choi;Sung Youl Hyun
    • Journal of Trauma and Injury
    • /
    • v.37 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • Purpose: This study aimed at developing a novel tube thoracostomy technique using the sternum, a fixed anatomical structure, as an indicator to reduce the possibility of incorrect chest tube positioning and complications in patients with chest trauma. Methods: This retrospective study analyzed the data of 184 patients with chest trauma who were aged ≥18 years, visited a single regional trauma center in Korea between April and June 2022, and underwent chest computed tomography (CT) with their arms down. The conventional gold standard, 5th intercostal space (ICS) method, was compared to the lower 1/2, 1/3, and 1/4 of the sternum method by analyzing CT images. Results: When virtual tube thoracostomy routes were drawn at the mid-axillary line at the 5th ICS level, 150 patients (81.5%) on the right side and 179 patients (97.3%) on the left did not pass the diaphragm. However, at the lower 1/2 of the sternum level, 171 patients (92.9%, P<0.001) on the right and 182 patients (98.9%, P= 0.250) on the left did not pass the diaphragm. At the 5th ICS level, 129 patients (70.1%) on the right and 156 patients (84.8%) on the left were located in the safety zone and did not pass the diaphragm. Alternatively, at the lower 1/2, 1/3, and 1/4 of the sternum level, 139 (75.5%, P=0.185), 49 (26.6%, P<0.001), and 10 (5.4%, P<0.001), respectively, on the right, and 146 (79.3%, P=0.041), 69 (37.5%, P<0.001), and 16 (8.7%, P<0.001) on the left were located in the safety zone and did not pass the diaphragm. Compared to the conventional 5th ICS method, the sternum 1/2 method had a safety zone prediction sensitivity of 90.0% to 90.7%, and 97.3% to 100% sensitivity for not passing the diaphragm. Conclusions: Using the sternum length as a tube thoracostomy indicator might be feasible.

Federated learning-based client training acceleration method for personalized digital twins (개인화 디지털 트윈을 위한 연합학습 기반 클라이언트 훈련 가속 방식)

  • YoungHwan Jeong;Won-gi Choi;Hyoseon Kye;JeeHyeong Kim;Min-hwan Song;Sang-shin Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.23-37
    • /
    • 2024
  • Digital twin is an M&S (Modeling and Simulation) technology designed to solve or optimize problems in the real world by replicating physical objects in the real world as virtual objects in the digital world and predicting phenomena that may occur in the future through simulation. Digital twins have been elaborately designed and utilized based on data collected to achieve specific purposes in large-scale environments such as cities and industrial facilities. In order to apply this digital twin technology to real life and expand it into user-customized service technology, practical but sensitive issues such as personal information protection and personalization of simulations must be resolved. To solve this problem, this paper proposes a federated learning-based accelerated client training method (FACTS) for personalized digital twins. The basic approach is to use a cluster-driven federated learning training procedure to protect personal information while simultaneously selecting a training model similar to the user and training it adaptively. As a result of experiments under various statistically heterogeneous conditions, FACTS was found to be superior to the existing FL method in terms of training speed and resource efficiency.

Analysis of Emerging Geo-technologies and Markets Focusing on Digital Twin and Environmental Monitoring in Response to Digital and Green New Deal (디지털 트윈, 환경 모니터링 등 디지털·그린 뉴딜 정책 관련 지질자원 유망기술·시장 분석)

  • Ahn, Eun-Young;Lee, Jaewook;Bae, Junhee;Kim, Jung-Min
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.609-617
    • /
    • 2020
  • After introducing the industry 4.0 policy, Korean government announced 'Digital New Deal' and 'Green New Deal' as 'Korean New Deal' in 2020. We analyzed Korea Institute of Geoscience and Mineral Resources (KIGAM)'s research projects related to that policy and conducted markets analysis focused on Digital Twin and environmental monitoring technologies. Regarding 'Data Dam' policy, we suggested the digital geo-contents with Augmented Reality (AR) & Virtual Reality (VR) and the public geo-data collection & sharing system. It is necessary to expand and support the smart mining and digital oil fields research for '5th generation mobile communication (5G) and artificial intelligence (AI) convergence into all industries' policy. Korean government is suggesting downtown 3D maps for 'Digital Twin' policy. KIGAM can provide 3D geological maps and Internet of Things (IoT) systems for social overhead capital (SOC) management. 'Green New Deal' proposed developing technologies for green industries including resource circulation, Carbon Capture Utilization and Storage (CCUS), and electric & hydrogen vehicles. KIGAM has carried out related research projects and currently conducts research on domestic energy storage minerals. Oil and gas industries are presented as representative applications of digital twin. Many progress is made in mining automation and digital mapping and Digital Twin Earth (DTE) is a emerging research subject. The emerging research subjects are deeply related to data analysis, simulation, AI, and the IoT, therefore KIGAM should collaborate with sensors and computing software & system companies.

A Study on The RFID/WSN Integrated system for Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경을 위한 RFID/WSN 통합 관리 시스템에 관한 연구)

  • Park, Yong-Min;Lee, Jun-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.31-46
    • /
    • 2012
  • The most critical technology to implement ubiquitous health care is Ubiquitous Sensor Network (USN) technology which makes use of various sensor technologies, processor integration technology, and wireless network technology-Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN)-to easily gather and monitor actual physical environment information from a remote site. With the feature, the USN technology can make the information technology of the existing virtual space expanded to actual environments. However, although the RFID and the WSN have technical similarities and mutual effects, they have been recognized to be studied separately, and sufficient studies have not been conducted on the technical integration of the RFID and the WSN. Therefore, EPCglobal which realized the issue proposed the EPC Sensor Network to efficiently integrate and interoperate the RFID and WSN technologies based on the international standard EPCglobal network. The proposed EPC Sensor Network technology uses the Complex Event Processing method in the middleware to integrate data occurring through the RFID and the WSN in a single environment and to interoperate the events based on the EPCglobal network. However, as the EPC Sensor Network technology continuously performs its operation even in the case that the minimum conditions are not to be met to find complex events in the middleware, its operation cost rises. Moreover, since the technology is based on the EPCglobal network, it can neither perform its operation only for the sake of sensor data, nor connect or interoperate with each information system in which the most important information in the ubiquitous computing environment is saved. Therefore, to address the problems of the existing system, we proposed the design and implementation of USN integration management system. For this, we first proposed an integration system that manages RFID and WSN data based on Session Initiation Protocol (SIP). Secondly, we defined the minimum conditions of the complex events to detect unnecessary complex events in the middleware, and proposed an algorithm that can extract complex events only when the minimum conditions are to be met. To evaluate the performance of the proposed methods we implemented SIP-based integration management system.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

A Study on the Performance Evaluation of G2B Procurement Process Innovation by Using MAS: Korea G2B KONEPS Case (멀티에이전트시스템(MAS)을 이용한 G2B 조달 프로세스 혁신의 효과평가에 관한 연구 : 나라장터 G2B사례)

  • Seo, Won-Jun;Lee, Dae-Cheor;Lim, Gyoo-Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.157-175
    • /
    • 2012
  • It is difficult to evaluate the performance of process innovation of e-procurement which has large scale and complex processes. The existing evaluation methods for measuring the effects of process innovation have been mainly done with statistically quantitative methods by analyzing operational data or with qualitative methods by conducting surveys and interviews. However, these methods have some limitations to evaluate the effects because the performance evaluation of e-procurement process innovation should consider the interactions among participants who are active either directly or indirectly through the processes. This study considers the e-procurement process as a complex system and develops a simulation model based on MAS(Multi-Agent System) to evaluate the effects of e-procurement process innovation. Multi-agent based simulation allows observing interaction patterns of objects in virtual world through relationship among objects and their behavioral mechanism. Agent-based simulation is suitable especially for complex business problems. In this study, we used Netlogo Version 4.1.3 as a MAS simulation tool which was developed in Northwestern University. To do this, we developed a interaction model of agents in MAS environment. We defined process agents and task agents, and assigned their behavioral characteristics. The developed simulation model was applied to G2B system (KONEPS: Korea ON-line E-Procurement System) of Public Procurement Service (PPS) in Korea and used to evaluate the innovation effects of the G2B system. KONEPS is a successfully established e-procurement system started in the year 2002. KONEPS is a representative e-Procurement system which integrates characteristics of e-commerce into government for business procurement activities. KONEPS deserves the international recognition considering the annual transaction volume of 56 billion dollars, daily exchanges of electronic documents, users consisted of 121,000 suppliers and 37,000 public organizations, and the 4.5 billion dollars of cost saving. For the simulation, we analyzed the e-procurement of process of KONEPS into eight sub processes such as 'process 1: search products and acquisition of proposal', 'process 2 : review the methods of contracts and item features', 'process 3 : a notice of bid', 'process 4 : registration and confirmation of qualification', 'process 5 : bidding', 'process 6 : a screening test', 'process 7 : contracts', and 'process 8 : invoice and payment'. For the parameter settings of the agents behavior, we collected some data from the transactional database of PPS and some information by conducting a survey. The used data for the simulation are 'participants (government organizations, local government organizations and public institutions)', 'the number of bidding per year', 'the number of total contracts', 'the number of shopping mall transactions', 'the rate of contracts between bidding and shopping mall', 'the successful bidding ratio', and the estimated time for each process. The comparison was done for the difference of time consumption between 'before the innovation (As-was)' and 'after the innovation (As-is).' The results showed that there were productivity improvements in every eight sub processes. The decrease ratio of 'average number of task processing' was 92.7% and the decrease ratio of 'average time of task processing' was 95.4% in entire processes when we use G2B system comparing to the conventional method. Also, this study found that the process innovation effect will be enhanced if the task process related to the 'contract' can be improved. This study shows the usability and possibility of using MAS in process innovation evaluation and its modeling.

Research on Generative AI for Korean Multi-Modal Montage App (한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구)

  • Lim, Jeounghyun;Cha, Kyung-Ae;Koh, Jaepil;Hong, Won-Kee
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Multi-modal generation is the process of generating results based on a variety of information, such as text, images, and audio. With the rapid development of AI technology, there is a growing number of multi-modal based systems that synthesize different types of data to produce results. In this paper, we present an AI system that uses speech and text recognition to describe a person and generate a montage image. While the existing montage generation technology is based on the appearance of Westerners, the montage generation system developed in this paper learns a model based on Korean facial features. Therefore, it is possible to create more accurate and effective Korean montage images based on multi-modal voice and text specific to Korean. Since the developed montage generation app can be utilized as a draft montage, it can dramatically reduce the manual labor of existing montage production personnel. For this purpose, we utilized persona-based virtual person montage data provided by the AI-Hub of the National Information Society Agency. AI-Hub is an AI integration platform aimed at providing a one-stop service by building artificial intelligence learning data necessary for the development of AI technology and services. The image generation system was implemented using VQGAN, a deep learning model used to generate high-resolution images, and the KoDALLE model, a Korean-based image generation model. It can be confirmed that the learned AI model creates a montage image of a face that is very similar to what was described using voice and text. To verify the practicality of the developed montage generation app, 10 testers used it and more than 70% responded that they were satisfied. The montage generator can be used in various fields, such as criminal detection, to describe and image facial features.

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.

Accuracy of 5-axis precision milling for guided surgical template (가이드 수술용 템플릿을 위한 5축 정밀가공공정의 정확성에 관한 연구)

  • Park, Ji-Man;Yi, Tae-Kyoung;Jung, Je-Kyo;Kim, Yong;Park, Eun-Jin;Han, Chong-Hyun;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • Purpose: The template-guided implant surgery offers several advantages over the traditional approach. The purpose of this study was to evaluate the accuracy of coordinate synchronization procedure with 5-axis milling machine for surgical template fabrication by means of reverse engineering through universal CAD software. Materials and methods: The study was performed on ten edentulous models with imbedded gutta percha stoppings which were hidden under silicon gingival form. The platform for synchordination was formed on the bottom side of models and these casts were imaged in Cone beam CT. Vectors of stoppings were extracted and transferred to those of planned implant on virtual planning software. Depth of milling process was set to the level of one half of stoppings and the coordinate of the data was synchronized to the model image. Synchronization of milling coordinate was done by the conversion process for the platform for the synchordination located on the bottom of the model. The models were fixed on the synchordination plate of 5-axis milling machine and drilling was done as the planned vector and depth based on the synchronized data with twist drill of the same diameter as GP stopping. For the 3D rendering and image merging, the impression tray was set on the conbeam CT and pre- and post- CT acquiring was done with the model fixed on the impression body. The accuracy analysis was done with Solidworks (Dassault systems, Concord, USA) by measuring vector of stopping’s top and bottom centers of experimental model through merging and reverse engineering the planned and post-drilling CT image. Correlations among the parameters were tested by means of Pearson correlation coefficient and calculated with SPSS (release 14.0, SPSS Inc. Chicago, USA) ($\alpha$ = 0.05). Results: Due to the declination, GP remnant on upper half of stoppings was observed for every drilled bores. The deviation between planned image and drilled bore that was reverse engineered was 0.31 (0.15 - 0.42) mm at the entrance, 0.36 (0.24 - 0.51) mm at the apex, and angular deviation was 1.62 (0.54 - 2.27)$^{\circ}$. There was positive correlation between the deviation at the entrance and that at the apex (Pearson Correlation Coefficient = 0.904, P = .013). Conclusion: The coordinate synchronization 5-axis milling procedure has adequate accuracy for the production of the guided surgical template.