• Title/Summary/Keyword: Virtual Combat

Search Result 56, Processing Time 0.021 seconds

A Study on the Design and Verification-Validation of the Supportive Equipment for Shipyard Test of Naval Combat System (함정 전투체계 함상시험을 위한 지원장비 설계 및 검증 연구)

  • Jung, Youngran;Kim, Cheolho;Han, Woonggie;Kim, Jaeick;Kim, Hyunsil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.318-326
    • /
    • 2014
  • The Shipyard Test of Naval Combat System depends on external factors, such as weather conditions and availability of its sensor-weapon, due to the need of on-board sensor-weapon during the test. This paper suggests the Supportive Equipment using virtual simulator for Shipward Test, in case of the unavailability of the on-board sensor-weapon or the test support force(aircraft, surface ship etc.), to pre-check the functions of the combat system as well as to prepare the Shipyard Test. To mock the real sensor-weapon functions as similar as possible, the Supportive Equipment for Shipyard Test was verified by the Verification and Validation process, which is usually performed while developing models in the Modeling & Simulation field.

Virtual-Constructive Simulation Interoperation for Aircombat Battle Experiment (Virtual-Constructive 시뮬레이션 연동을 활용한 공중전 전투 실험)

  • Kim, Dongjun;Shin, Yongjin;An, Kyeong-Soo;Kim, Young-Gon;Moon, Il-Chul;Bae, Jang Won
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.139-152
    • /
    • 2021
  • Simulations enable virtually experiencing rare events as well as analytically analyzing such events. Defense modeling and simulation research and develops the virtual and the constructive simulations to support these utilizations. These virtual and constructive(VC) simulations can interoperate to simultaneously virtual combat experience as well as evaluations on tactics and intelligence of combat entities. Moreover, recently, for artificial intelligence researches, it is necessary to retrieve human behavior data to proceed the imitation learning and the inverse reinforcement learning. The presented work illustrates a case study of VC interoperations in the aircombat scenario, and the work analyze the collected human behavior data from the VC interoperations. Through this case study, we discuss how to build the VC simulation in the aircombat area and how to utilize the collected human behavior data.

A feasibility study of virtualization for Submarine Combat System

  • Lee, Dong-Won;Bae, Byung-Ku;Cho, Kyu-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.121-129
    • /
    • 2022
  • In this paper, the virtual environment using rack server type HPC and 3U VPX server type HPC was applied and tested to the basic functions of the Jangbogo-III class submarine combat system developed for the first time in Korea. Based on this test results, the possibility of applying virtualization to the domestic submarine combat system to be developed in the future is confirmed. Existing studies have been limited to deriving applicable virtualization solutions through simple performance analysis of virtualization solutions or applying virtualization to some functions of the surface ship combat system, but in this paper, the application of virtualization is expanded to the submarine combat system through testing.

V&V of Integrated Interoperability System for LVC Simulation on Aircraft Weapon System (항공무기체계 LVC 시뮬레이션을 위한 통합연동시스템 V&V)

  • Oh, Jihyun;Jang, Young Chan;Kim, Cheon Young;Jee, Cheol Kyu;Hong, Young Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.326-334
    • /
    • 2015
  • This paper describes the verification and the validation about the development of the integrated interoperability system for live, virtual, and constructive simulations on the aircraft weapon system. The proposed integrated interoperability system provides the framework and application softwares for implementing a synthetic environment emulating real-world environment among distributed simulation models, which are a mission model and an air combat model of a constructive level, an tactical simulator of a virtual level, and simulated ACMI of a live level. In this paper, we verify requested functions through an developmental test and evaluation, and validate operability and usability through conducing integrated LVC scenarios on the integrated interoperability system.

Architectural Model of Integrated Simulation Environment for the M&S Based Design of Unmanned Ground Combat Vehicle (M&S기반 무인지상전투차량 설계를 위한 통합모의실험환경 아키텍처모델)

  • Choi, Sang Yeong;Park, Jin Ho;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2015
  • M&S (Modeling & Simulation) based design is widely accepted for the development of the future weapon system with better performance in a cheaper and faster way. Integrated simulation environment (ISE) is needed for the M&S based design. On the ISE, system engineers can not only verify design options but also validate system requirements. In this paper, we propose architectural models of the integrated simulation environment (ISE) which incorporates mission effectiveness M&S (Modeling & Simulation), system performance M&S, the optimization model of integrated performances, digital mockup and virtual prototype. The ISE architectural models may be used to implement the ISE for the development of the future unmanned ground combat vehicle.

Development of C2 Virtual Linked Simulator For Engineering and Engagement Level Battle Experimentation (공학-교전급 전투실험을 위한 C2 가상모의 연동 시뮬레이터 개발)

  • Lee, Sangtae;Lee, Seungyoung;Hwang, Kun-Chul;Kim, Saehwan;Lee, Kyuhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2013
  • The Korean naval weapon systems, combat experiments establish the concept of Battle operations, and create the future of the new weapons system. Doctrine development and training as well as ranging from experiments for evaluate the performance of mission operations for combat experiments are used. The battle lab is effectively support tool for the Korean Naval battle experiments. The battle lab is through a dedicated testing facility and to build efficient and effective simulation-based acquisition supporting environment. In this paper, the ship / submarines C2 operations virtual simulator was developed to support the concept of Battle operations of naval combat experiments in training and tactical development. The ship C2 operations virtual simulator makes the anti-ship and anti-aircraft the engagement scenario for performed experiments using the SADM. The submarines C2 operations virtual simulator makes the anti-submarine engagement scenario for performed experiments using EAS. EAS System was created before reuse. EAS system by modifying the additional interfaces HLA-RTI has been reused. Reflected in the tactics and training after analysis of the results through the battle experiment. Also increase training fidelity through operator involvement. The anti-ship and anti-aircraft system architecture (SADM) and anti-submarine system architecture (EAS) requires unique design of system framework since two separate architectures should be integrated into a system. An C2 virtual linked architecture was used to integrate different system architecture. A C2 virtual linked software framework, designed that have integrated protocol for battle experimental linkage and battlefield visualization environment.

A study of submarine combat management system docker-based server virtualization design and performance analysis

  • Son, Sang-Gil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.121-129
    • /
    • 2022
  • the Naval Combat Management System(CMS) has been installed and used in various ships since its localization, and has been developed by continuously introducing the latest technology. Recently, surface ship CMS have applied server virtualization and desktop virtualization(Virtual Desktop Infra, VDI) technologies among virtualization technologies to increase system stability and limitations on the limited space and weight of ships. On the other hand, submarine CMS do not have virtualization technology applied, so there are limitations in space and weight limitations and CMS efficiency improvement. To this end, this paper proposes a next-generation submarine CMS using Docker-based server virtualization. Through performance analysis between the processor of the existing CMS and the processor to which Docker-based server virtualization was applied, it was confirmed that the method proposed in this paper is applicable to the next-generation submarine CMS.

Test-Bed for the Interoperation of Virtual-Constructive Simulation (소부대 교전훈련 Virtual-Constructive 시뮬레이션 연동개념 연구를 위한 테스트베드)

  • Kwon, Soon-Geol;Choi, Mi-Seon;Kim, Mun-Su;Lee, Tae-Eog
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.219-233
    • /
    • 2010
  • The objective of the interoperation of L-V-C Simulation is to enable practical integration training by taking advantages and compensating disadvantages of simulation models, such as Live, Virtual and Constructive models. As a study on the interoperation of L-V-C simulation, this paper suggests effective interoperation method between Virtual and Constructive simulation models and demonstrates small-size intagrated combat training model through V-C Test-Bed.

A Numerical Study on the Flash Fire in the Combat System by the Kinetic Energy Ammunition and the Loaded Shells (운동에너지 탄과 적재포탄에 따른 전투시스템 내부에서의 순간화재발생에 대한 전산해석)

  • Lee, Seung-Chul;Jeon, Woo-Chul;Lee, Hae-Pyeong;Lee, Heon-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.828-832
    • /
    • 2013
  • In this paper, numerical analysis was performed about whether the flash fire of loaded shells breaks out in the virtual combat vehicle according to sorts of the kinetic energy ammunition as the preceding research for vulnerability analysis inside the combat system by an external threaty ammunition. In this simulation, Autodyn program was used and the Lee-Tarver ignition and growth model was used to determine the flash fire outbreak. In this study, the kinetic energy ammunition was set of type A and type B in two kinds and the loaded shells was set of COMPB, TNT, PBX9404 and ANB. As a result, TNT and PBX9404 have much higher flash fire probability than COMPB in high explosive, ANB has very low flash fire probability.

A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS (HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구)

  • Kim, Chi-Ung;Kim, Moon-June;Rhee, Eun-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.