• Title/Summary/Keyword: Virtual Boundary Method

Search Result 136, Processing Time 0.02 seconds

A Study on the Analysis of the Characteristics of the Real-time Behavior Space Design - Focused on the Works of onl and NOX - (물리구축환경의 지능적 부활로서의 실시간 행태 공간의 특성 분석 - onl과 NOX의 작품을 중심으로 -)

  • Lee Hanna;Park Hyun-Ok
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.4 s.51
    • /
    • pp.19-26
    • /
    • 2005
  • Digital technology continually makes a space evolves. The real-time behavior design communicates the data with the situation of circumference of the space(visitors moving, interior and exterior situations). The space form was changed because it interfaces in real time. The purpose of this study was finding out the characteristics of real-time behavior space design through the analysis of space formative languages, sensorium, S-R and material. This study will be the one of basic references for the digital space design. The boundary of this study set limits to the works of digital space designer who applies the real-time exchanging data to their design among the digital space design works from 1996 to 2004. But it excepted from the real-time behavior space in virtual realty. Therefore, the objects of this study were the works of onl and NOX(paraSITE, Trans-port 2001, Muscle, MotormeCCa, Handdrawspace, Saltwater Pavilion, Son-O-House, H2O Expo). The method was the contents analysis of space formative languages(Greg Lynn's ten space formative languages; bleb, blob, branch, flower, fold, lattice, teeth, shred, skins and strand), sensorium, S-R and material. The results of the study are as follows: 1) The organizational elements; Space formative languages(bleb, blob, fold, shred, skins, strand), stimulation(Human Participation, Human Moving, Weather Conditions), and response(Spatial Moving, Sound Pattern, Lighting Pattern, color Pattern, Activating Particles, Moving Picture, Virtual Friend) 2) The material Use; Sound, lights, and network have been used in the space. Immaterial matter will be used the main material of space design in 21"'century, 3)The spatial types; formal changing of space, projecting immaterial elements, and changing the sound.

Submarine bistatic target strength analysis based on bistatic-to-monostatic conversion (양상태-단상태 변환 기반 잠수함 양상태 표적강도 해석)

  • Kookhyun Kim;Sung-Ju Park;Keunhwa Lee;Dae-Seung Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.138-144
    • /
    • 2024
  • This paper presents a bistatic to monostatic conversion technique to analyze the bistatic target strength of submarines. The technique involves determining the transmission path length of acoustic waves, which are emitted from a source, scattered off an underwater target, and eventually received by a receiver. By generating a corresponding virtual scattering surface, this method effectively transforms the target strength analysis problem from bistatic to monostatic. The converted monostatic target strength problem can be assessed using a well-established monostatic numerical methods. The bistatic target strength analysis for Benchmark Target Strength Simulation (BeTTSi), a widely used target strength model were performed. The results were compared with those calculated by boundary element methods and Kirchhoff approximation, and confirmed the validity and the practical applicability of the proposed analysis technique for evaluating submarine target strength.

A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations

  • Attia, Amina;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.453-464
    • /
    • 2018
  • In this paper, an efficient higher-order shear deformation theory is presented to analyze thermomechanical bending of temperature-dependent functionally graded (FG) plates resting on an elastic foundation. Further simplifying supposition are made to the conventional HSDT so that the number of unknowns is reduced, significantly facilitating engineering analysis. These theory account for hyperbolic distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Nonlinear thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from the principle of virtual displacements. Analytical solutions for the thermomechanical bending analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent FG plates and validated with those of other shear deformation theories. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature field on the thermomechanical bending characteristics. It can be concluded that the present theory is not only accurate but also simple in predicting the thermomechanical bending responses of temperature-dependent FG plates.

Confidence Map based Multi-view Image Generation Method from Stereoscopic Images (양안식 영상을 이용한 신뢰도 기반의 다시점 영상 생성 방법)

  • Kim, Do Young;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.27-33
    • /
    • 2013
  • Multi-view video system provides both realistic 3D feelings and free-view navigation. But it is hard to transmit too huge data, so we send only two or three view images and generate intermediate view image using depth information. In this paper, we propose high quality multi-view image generation method from stereoscopic images. Since the stereo matching method does not provide accurate disparity values for all the pixels, especially at the occlusion area, we propose an occlusion handling method using the background pixels at first. We also apply a joint bilateral filtering to enhance the disparity map at the object boundary since it can affect the quality of synthesized images significantly. Finally, we can generate virtual view images at intermediate view positions using confidence map to reduce bad pixel and hole's error. Experimental results show the proposed method performs better than the conventional method.

  • PDF

An Investigation of Roughness Effects on 2-Dimensional Wall Attaching Offset Jet Flow (조도가 2차원 벽부착 제트유동에 미치는 영향에 관한 연구)

  • 윤순현;김대성;박승철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.219-230
    • /
    • 1995
  • The flow characteristics of a two-dimensional offset jet issuing parallel to a rough wall is experimentally investigated by using a split film probe with the modified Stock's calibration method. The mean velocity and turbulent stresses profiles in the up and down-stream locations of the wall-attachment regions are measured and compared with those of the smooth wall attaching offset jet cases. It is found that the wall-attachment region on the rough wall is wider than on the smooth wall for the same offset height and the jet speed. The position of the maximum velocity point is farther away from the wall than that for the smooth wall case because of the thick wall boundary layer established by the surface roughness. It is concluded that the roughness of the wall accelerates the relaxation process to a redeveloped plane wall jet and produces a quite different turbulent diffusion behavior especially near the wall from comparing with the smooth plane wall jet turbulence.

Numerical Simulation of Aerodynamic Characteristics of a Supersonic Projectile (초음속 발사체의 공력 특성에 관한 수치해석)

  • Lim Chae-Min;Lee Jeong-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.86-89
    • /
    • 2005
  • A computational work has been performed to investigate the aerodynamics of a projectile which is launched from the two-stage light gas gun. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The effect of a virtual mass is added to the axisymmetric unsteady Euler equation system. The computed results reasonably capture the major flow characteristics which we generated in launching the projectile supersonically, such as the interaction between the shock wave and the blast wave, the interaction between the vortical flow and the barrel shock, and the steady under-expanded jet. The present computational results properly predict the velocity, acceleration, and drag histories of the projectile.

  • PDF

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model

  • Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.253-262
    • /
    • 2020
  • In this paper, a new higher order shear deformation model is developed for static analysis of functionally graded beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. The model account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG beam. Based on the present higher-order shear deformation model, the equations of motion are derived by the principle of virtual works. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, and geometry on the bending of imperfect FG beams. It can be concluded that the proposed model is simple and precise for the resolution of the behavior of flexural FGM beams while taking into account the shape of distribution of the porosity.

THE INVESTIGATION OF HELICOPTER ROTOR AERODYNAMIC ANALYSIS METHODS (헬리콥터 로터 공력해석을 위한 수치적 방법 연구)

  • Park, N.E.;Woo, C.H.;Rho, H.W.;Kim, C.H.;Yee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.120-124
    • /
    • 2007
  • Helicopters and rotary-wing vehicles encounter a wide variety of complex aerodynamic phenomena and these phenomena present substantial challenges for computational fluid dynamics(CFD) models. This investigation presents the rotor aerodynamic analysis items for the helicopter development and variety aerodynamic analysis methods to provide the better solution to researchers and helicopter developers between aerodynamic problems and numerical aerodynamic analysis methods. The numerical methods to make an analysis of helicopter rotor are as below - CFD Modelling : actuator disk model, BET model, fully rotor model,... - Grid : sliding mesh, chimera mesh / structure mesh, unstructure mesh,... - etc. : panel method periodic boundary, quasi-steady simulation, incompressible,... The choice of CFD methodology and the numerical resolution for the overall problem have been driven mostly by available computer speed and memory at any point in time. The combination of the knowledge of aerodynamic analysis items, available computing power and choice of CFD methods now allows the solution of a number of important rotorcraft aerodynamics design problems.

  • PDF

Dynamic Analysis of Laminated Composite and Sandwich Plates Using Trigonometric Layer-wise Higher Order Shear Deformation Theory

  • Suganyadevi, S;Singh, B.N.
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.10-16
    • /
    • 2016
  • A trigonometric Layerwise higher order shear deformation theory (TLHSDT) is developed and implemented for free vibration and buckling analysis of laminated composite and sandwich plates by analytical and finite element formulation. The present model assumes parabolic variation of out-plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag model able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. Hence, botheration of shear correction coefficient is neglected. In the case of analytical method, the governing differential equation and boundary conditions are obtained from the principle of virtual work. For the finite element formulation, an efficient eight noded $C^0$ continuous isoparametric serendipity element is established and employed to examine the dynamic analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.