• Title/Summary/Keyword: Vinylbenzyl Triphenyl Phosphonium Chloride

Search Result 2, Processing Time 0.013 seconds

Humidity-Sensitive Characteristics and Reliabilities of Polymeric Humidity Sensor Containing Phosphonium Salts (포스포늄 염을 가진 고분자 습도센서의 감습 특성 및 신뢰성)

  • Kim, Ohyoung;Gong, Myoung-Seon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.554-560
    • /
    • 1998
  • Vinylbenzyl triphenyl phosphonium chloride(VTPC)/styrenes=3.7 copolymer was prepared for the moisture-absorptive polyelectrolyte dew sensor containing phosphonium salts. The humid membrane was fabricated on the gold/alumina electrode by dipping. The impedances were $11M{\Omega}$, $980k{\Omega}$, $50k{\Omega}$, and $11k{\Omega}$ at 70%RH, 80%RH, 90%RH and 95%RH, respectively, at $25^{\circ}C$ and the humidity-sensitive charactristic was suitable for the dew sensor. The temperature-dependent coefficient between $15^{\circ}C$ and $35^{\circ}C$ was found to be $-0.25%RH/^{\circ}C$ and the hysteresis falled in the ${\pm}2%RH$ range. The response time was found to be 45 sec for the relative humidity ranging from 70%RH to 98%RH at $25^{\circ}C$. The reliabilities such as temperature cycle, humidity cycle, high temperature and humidity resistance, electrical load stability, stability of long-term storage and water durability were measured and evaluated for the application as a dew sensor.

  • PDF

Humidity Sensitive Properties of Copolymers of Polystyrene Contains Phosphonium Salts (포스포늄 염을 포함한 폴리스티렌 공중합체의 감습 성질)

  • Paek, Jee-Seon;Gong, Myoung-Seon
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.715-722
    • /
    • 1995
  • Vinylbenzyl triphenyl phosphonium chloride (VTPC) was prepared for the humid membrane. The humidity sensitive memo)lane was composed of copolymers, which have differnet content of VTPC and styrene (VTPC : ST=1 : 0.7 : 3, 5 : 5, 3 : 7). The changes in electrical properties of copolymers with relative humidity were measured. It was found that the impedance decreased with an increase of the content of VTPC in the humid membrane, and the Impedance also decreased with an increase of thickness of humid membrane. The copolymer derived from same equip of VTPC and ST showed 12M$\Omega$-100M$\Omega$ at 70%RH-90%RH, which was required for the current humidity sensor operating at high humidity or dew point. The temperature dependence coefficient at a temperature range 15$^{\circ}C$∼35$^{\circ}C$ was found to be -0.5%RH/$^{\circ}C$ and the hysterisis fabled within the range ${\pm}$2%RH. The response time was found to be 40seconds for varing relative humidity from 75% RH to 95%RH and vice versa.

  • PDF