• Title/Summary/Keyword: Vine-Based Dial Algorithm

Search Result 2, Processing Time 0.017 seconds

Vine Based Dial Algorithm (덩굴망기반 Dial 알고리즘 연구)

  • Lee, Mee Young;Kim, Jong Hyung;Jung, Dongjae;Shin, Seongil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.39-47
    • /
    • 2018
  • The Dial Algorithm, based on single link based calculation, is unable to reflect cyclic paths arising in actual urban transportation networks. At the same time, redefining the paths more efficiently can, by strict standards, lead to irrational results stemming from reduction in the size of the network to be analyzed. To solve these two problems of the Dial algorithm, the research herein proposes a vine network method applied to a link based Dial Algorithm, in which the original three step alogrithm is modified into a vine network-based three step process. Also, an analysis of two case study networks show feasible replication of the predicted cyclic path, unrealistic flow, and unsteady transit, as well as alleviation of the problem of irrational path allocation.

A Vine-Based Stochastic Loading Technique in Pedestrian Networks Considering Space Syntax Theory (Space Syntax Theory를 반영한 덩굴망기반 확률적 보행네트워크 배정기법)

  • Kim, Jong Hyung;Lee, Mee Young;Nam, Doo Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.71-79
    • /
    • 2016
  • Evaluation of the walkability of the urban pedestrian network requires construction of a pedestrian network model that reflects Space Syntax Theory. Space Syntax Theory deduces an integration value through which materials for evaluation of the pedestrian network's connectivity can be produced; and can aid in illustrating the ease of walkability through the model's calculation of pedestrian indices such as movability, comfort, and safety. But the representation of space syntax theory in the pedestrian network requires that turn delay be added by means of a network-type construction method. While tree-based Dial Algorithm proposed for the logit-based probability walkability distribution model may be effective for link-based pedestrian volume distribution, it requires further network expansion to reflect turn delays. In this research, Vine-based Dial Algorithm is executed in order to obtain a measure reflecting the integration value for Space Syntax Theory. The Vine-based Dial Algorithm of two adjacent links, which forms the minimum unit of the Vine network, has the advantage of encompassing turn delay, and thus eliminates the need for network expansion. Usage of the model to evaluation of complicated pedestrian spheres such as urban roads is left to further research. Especially the progression of the proposed method is deduced through case study.