• Title/Summary/Keyword: Vienna Basin

Search Result 2, Processing Time 0.015 seconds

Basin modelling with a MATLAB-based program, BasinVis 2.0: A case study on the southern Vienna Basin, Austria (MATLAB 기반의 프로그램 BasinVis 2.0을 이용한 분지 모델링: 오스트리아 비엔나 분지의 남부 지역에 대한 사례 연구)

  • Lee, Eun Young;Wagreich, Michael
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.615-630
    • /
    • 2018
  • Basin analysis is a research field to understand the formation and evolution of sedimentary basins. This task requires various geoscientific datasets as well as numerical and graphical modelling techniques to synthesize results dimensionally in time and space. For basin analysis and modelling in a comprehensive workflow, BasinVis 1.0 was released as a MATLAB-based program in 2016, and recently the software has been extended to BasinVis 2.0, with new functions and revised user-interface. As a case study, this work analyses the southern Vienna Basin and visualizes the sedimentation setting and subsidence evolution to introduce the basin modelling functions of BasinVis 2.0. This is a preliminary study for a basin-scale modelling of the Vienna Basin, together with our previous studies using BasinVis 1.0. In the study area, during the late Early Miocene, sedimentation and subsidence are significant along strike-slip and en-echelon listric normal faults. From the Middle Miocene onwards, however, subsidence decreases abruptly over the area and this situation continues until the Late Miocene. This is related to the development of the pull-apart system and corresponds to the episodic tectonic subsidence in strike-slip basins. The subsidence of the Middle Miocene is confined mainly to areas along the strike-slip faults, while, from the late Middle Miocene, the depocenter shifts to a depression along the N-S trending listric normal faults. This corresponds to the regional paleostress regime transitioning from NE-SW trending transtension to E-W trending extension. This study applies various functions and techniques to this case study, and the modelled results demonstrate that BasinVis 2.0 is effective and applicable to the basin modelling.

Environment isotope aided studies on river water and ground water interaction in the Han River basin (동위원소를 이용한 한강유역의 지하수와 지표수의 연관성에 관한 연구)

  • 안종성;김재성
    • Water for future
    • /
    • v.16 no.4
    • /
    • pp.245-252
    • /
    • 1983
  • Recently river water pollution in Korea is given rise to serious problem in aspect of crop production, drinking well, water contamination and etc. Under these urgent situations, it is prime importance to protect water resources from pollutants. An environmental isotope survey of the groundwater form the shallow alluvial and the underlying crystalline rock aquifer of the Han River Basin has been undertaken, Analysis of the data has I) confirmed the hypothesis that the groundwater from the metropolitan area is recharged from the river whereas that form the non-urbanized region of the Basin is replenished by the infiltrating precipitation; ii) shown that crystalline rock aquifers are recharged by the ground water form the overlying alluvium. Old groundwater is a group of wells with tritium values in the range of 0 to 2 TU. These low values indicate that the water sampled was recharged much ealier, at least a few decades, than the other groundwater samples of higher tritium content. The low values in this region may, in fact, reflect the effect of the impermeable clay layers which impede infilteration from the surface. Stable isotope evidence confirmed that a recharge in the karst area occurs at a significantly greater elevation than that to the alluvial aquifer. An analysis of the tritium level collected over an annual cycle suggests that the residence time of groundwater is probably not more than a few months. There does not appear to be any correlation between the trace level of Zn, Mn and Pb in the groundwater and the mechanism of the recharge.

  • PDF