• 제목/요약/키워드: Video translation

검색결과 40건 처리시간 0.021초

윈도우 기반의 광학문자인식을 이용한 영상 번역 시스템 구현 (An Implementation of a System for Video Translation on Window Platform Using OCR)

  • 황선명;염희균
    • 사물인터넷융복합논문지
    • /
    • 제5권2호
    • /
    • pp.15-20
    • /
    • 2019
  • 기계학습 연구가 발달함에 따라 번역 분야 및, 광학 문자 인식(Optical Character Recognition, OCR) 등의 이미지 분석 기술은 뛰어난 발전을 보였다. 하지만 이 두 가지를 접목시킨 영상 번역은 기존의 개발에 비해 그 진척이 더딘 편이다. 본 논문에서는 기존의 OCR 기술과 번역기술을 접목시킨 이미지 번역기를 개발하고 그 효용성을 검증한다. 개발에 앞서 본 시스템을 구현하기 위하여 어떤 기능을 필요로 하는지, 기능을 구현하기 위한 방법은 어떤 것이 있는지 제시한 뒤 각기 그 성능을 시험하였다. 본 논문을 통하여 개발된 응용프로그램으로 사용자들은 좀 더 편리하게 번역에 접근할 수 있으며, 영상 번역이라는 특수한 환경으로 한정된 번역기능에서 벗어나 어떠한 환경에서라도 제공되는 편의성을 확보하는데 기여할 수 있을 것이다.

Design of Metaverse for Two-Way Video Conferencing Platform Based on Virtual Reality

  • Yoon, Dongeon;Oh, Amsuk
    • Journal of information and communication convergence engineering
    • /
    • 제20권3호
    • /
    • pp.189-194
    • /
    • 2022
  • As non-face-to-face activities have become commonplace, online video conferencing platforms have become popular collaboration tools. However, existing video conferencing platforms have a structure in which one side unilaterally exchanges information, potentially increase the fatigue of meeting participants. In this study, we designed a video conferencing platform utilizing virtual reality (VR), a metaverse technology, to enable various interactions. A virtual conferencing space and realistic VR video conferencing content authoring tool support system were designed using Meta's Oculus Quest 2 hardware, the Unity engine, and 3D Max software. With the Photon software development kit, voice recognition was designed to perform automatic text translation with the Watson application programming interface, allowing the online video conferencing participants to communicate smoothly even if using different languages. It is expected that the proposed video conferencing platform will enable conference participants to interact and improve their work efficiency.

Sign Language Image Recognition System Using Artificial Neural Network

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.193-200
    • /
    • 2019
  • Hearing impaired people are living in a voice culture area, but due to the difficulty of communicating with normal people using sign language, many people experience discomfort in daily life and social life and various disadvantages unlike their desires. Therefore, in this paper, we study a sign language translation system for communication between a normal person and a hearing impaired person using sign language and implement a prototype system for this. Previous studies on sign language translation systems for communication between normal people and hearing impaired people using sign language are classified into two types using video image system and shape input device. However, existing sign language translation systems have some problems that they do not recognize various sign language expressions of sign language users and require special devices. In this paper, we use machine learning method of artificial neural network to recognize various sign language expressions of sign language users. By using generalized smart phone and various video equipment for sign language image recognition, we intend to improve the usability of sign language translation system.

Application of Artificial Neural Network For Sign Language Translation

  • Cho, Jeong-Ran;Kim, Hyung-Hoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.185-192
    • /
    • 2019
  • In the case of a hearing impaired person using sign language, there are many difficulties in communicating with a normal person who does not understand sign language. The sign language translation system is a system that enables communication between the hearing impaired person using sign language and the normal person who does not understand sign language in this situation. Previous studies on sign language translation systems for communication between normal people and hearing impaired people using sign language are classified into two types using video image system and shape input device. However, the existing sign language translation system does not solve such difficulties due to some problems. Existing sign language translation systems have some problems that they do not recognize various sign language expressions of sign language users and require special devices. Therefore, in this paper, a sign language translation system using an artificial neural network is devised to overcome the problems of the existing system.

Netflix와 Youtube 플랫폼 내의 영화 자막오역 분석을 통한 영상번역 실태와 개선점: 한국어 번역본을 중심으로. (The actual condition and improvement of audiovisual translation through analysis of subtitle in Netflix and YouTube: focusing on Korean translation.)

  • 오경한;노영희
    • 디지털융복합연구
    • /
    • 제19권3호
    • /
    • pp.25-35
    • /
    • 2021
  • 인터넷과 연결 가능한 기기만 있다면 어디서든 외국의 영상매체를 시청할 수 있게 되었다. Netflix와 Youtube는 대표적인 영상 플랫폼이고 많은 사람들이 이용하고 있기도 하다. 그러다보니 외국어를 알지 못하는 경우, 전적으로 자막에 의존할 수밖에 없다. 이에 본 연구에서는 두 개의 인기 플랫폼에서 양질의 번역을 제공하고 있는지 알아보기 위해 두 곳에서 동시에 상영하고 있는 영화를 골라 한국어 번역본을 가지고 비교해보고 더 나은 방향과 문제점을 도출하였다. 그 결과, 좋은 번역이란 번역가가 시청자들이 집중을 할 수 있게 적절한 생략과 자세한 설명을 한정된 시간과 공간 안에 할 수 있어야 한다. 작업물을 심도 있게 연구하고 충분한 시간을 들여 작업에 임한다면 번역의 퀼리티는 확연히 올라갈 것이다. 마지막으로 본 연구는 영상번역에 대한 가이드라인 없이 싼 단가에 최소한의 시간을 들여 제작한 영상물들의 오역을 통해 아직 과거에 머물고 있는 영상번역 시장 활성화에 기여하였다.

비디오 캡셔닝을 적용한 수어 번역 및 행동 인식을 적용한 수어 인식 (Sign language translation using video captioning and sign language recognition using action recognition)

  • 김기덕;이근후
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.317-319
    • /
    • 2024
  • 본 논문에서는 비디오 캡셔닝 알고리즘을 적용한 수어 번역 및 행동 인식 알고리즘을 적용한 수어 인식 알고리즘을 제안한다. 본 논문에 사용된 비디오 캡셔닝 알고리즘으로 40개의 연속된 입력 데이터 프레임을 CNN 네트워크를 통해 임베딩 하고 트랜스포머의 입력으로 하여 문장을 출력하였다. 행동 인식 알고리즘은 랜덤 샘플링을 하여 한 영상에 40개의 인덱스에서 40개의 연속된 데이터에 CNN 네트워크를 통해 임베딩하고 GRU, 트랜스포머를 결합한 RNN 모델을 통해 인식 결과를 출력하였다. 수어 번역에서 BLEU-4의 경우 7.85, CIDEr는 53.12를 얻었고 수어 인식으로 96.26%의 인식 정확도를 얻었다.

  • PDF

GAN 적대적 생성 신경망과 이미지 생성 및 변환 기술 동향 (Research Trends of Generative Adversarial Networks and Image Generation and Translation)

  • 조영주;배강민;박종열
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.91-102
    • /
    • 2020
  • Recently, generative adversarial networks (GANs) is a field of research that has rapidly emerged wherein many studies conducted shows overwhelming results. Initially, this was at the level of imitating the training dataset. However, the GAN is currently useful in many fields, such as transformation of data categories, restoration of erased parts of images, copying facial expressions of humans, and creation of artworks depicting a dead painter's style. Although many outstanding research achievements have been attracting attention recently, GANs have encountered many challenges. First, they require a large memory facility for research. Second, there are still technical limitations in processing high-resolution images over 4K. Third, many GAN learning methods have a problem of instability in the training stage. However, recent research results show images that are difficult to distinguish whether they are real or fake, even with the naked eye, and the resolution of 4K and above is being developed. With the increase in image quality and resolution, many applications in the field of design and image and video editing are now available, including those that draw a photorealistic image as a simple sketch or easily modify unnecessary parts of an image or a video. In this paper, we discuss how GANs started, including the base architecture and latest technologies of GANs used in high-resolution, high-quality image creation, image and video editing, style translation, content transfer, and technology.

Motion Compensated Subband Video Coding with Arbitrarily Shaped Region Adaptivity

  • Kwon, Oh-Jin;Choi, Seok-Rim
    • ETRI Journal
    • /
    • 제23권4호
    • /
    • pp.190-198
    • /
    • 2001
  • The performance of Motion Compensated Discrete Cosine Transform (MC-DCT) video coding is improved by using the region adaptive subband image coding [18]. On the assumption that the video is acquired from the camera on a moving platform and the distance between the camera and the scene is large enough, both the motion of camera and the motion of moving objects in a frame are compensated. For the compensation of camera motion, a feature matching algorithm is employed. Several feature points extracted using a Sobel operator are used to compensate the camera motion of translation, rotation, and zoom. The illumination change between frames is also compensated. Motion compensated frame differences are divided into three regions called stationary background, moving objects, and newly emerging areas each of which is arbitrarily shaped. Different quantizers are used for different regions. Compared to the conventional MC-DCT video coding using block matching algorithm, our video coding scheme shows about 1.0-dB improvements on average for the experimental video samples.

  • PDF

DNN 기반 수어 번역 모델을 통한 성능 분석 (Performance Analysis Using a DNN-Based Sign Language Translation Model)

  • 정민재;노승환;홍준기
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.187-196
    • /
    • 2024
  • 본 연구에서는 수어의 좌표를 압축하여 학습 시간을 획기적으로 단축시킬 수 있는 DNN (Deep Neural Network) 기반 수어 번역 모델을 제안하고 수어 좌표 압축 유무에 따른 정확도와 모델 학습 시간을 비교 분석하였다. 제안한 모델을 사용하여 수어를 번역한 결과, 수어 영상을 압축하기 전과 후의 정확도는 약 5.9% 감소한 반면, 학습 시간은 56.57% 감소하여 수어 번역 정확도 손실 대비 학습 시간에서 많은 이득을 얻는 것을 확인하였다.

수어 번역을 위한 3차원 컨볼루션 비전 트랜스포머 (Three-Dimensional Convolutional Vision Transformer for Sign Language Translation)

  • 성호렬;조현중
    • 정보처리학회 논문지
    • /
    • 제13권3호
    • /
    • pp.140-147
    • /
    • 2024
  • 한국에서 청각장애인은 지체장애인에 이어 두 번째로 많은 등록 장애인 그룹이다. 하지만 수어 기계 번역은 시장 성장성이 작고, 엄밀하게 주석처리가 된 데이터 세트가 부족해 발전 속도가 더디다. 한편, 최근 컴퓨터 비전과 패턴 인식 분야에서 트랜스포머를 사용한 모델이 많이 제안되고 있는데, 트랜스포머를 이용한 모델은 동작 인식, 비디오 분류 등의 분야에서 높은 성능을 보여오고 있다. 이에 따라 수어 기계 번역 분야에서도 트랜스포머를 도입하여 성능을 개선하려는 시도들이 제안되고 있다. 본 논문에서는 수어 번역을 위한 인식 부분을 트랜스포머와 3D-CNN을 융합한 3D-CvT를 제안한다. 또, PHOENIX-Wether-2014T [1]를 이용한 실험을 통해 제안 모델은 기존 모델보다 적은 연산량으로도 비슷한 번역 성능을 보이는 효율적인 모델임을 실험적으로 증명하였다.