• 제목/요약/키워드: Video tracking

검색결과 611건 처리시간 0.03초

SG 정보를 이용한 강인한 물체 추출 알고리즘 (Robust Object Detection Algorithm Using Spatial Gradient Information)

  • 주영훈;김세진
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.422-428
    • /
    • 2008
  • 본 논문에서는 spatial gradient를 이용한 강인한 물체 추출 방법을 제안한다. 제안한 방법은 먼저 복잡한 환경과 다양한 빛의 변화에 의해 나타나는 에러 값 등을 해결하기 위해 기존에 제안된 입력 영상과 기준 영상에서 밝기와 색 성분을 이용하여 최초 배경을 제거한다. 배경을 제거한 다음, 그림자로 인식되어 전경 영역에 추가된 부분을 RGB 칼라 모델과 정규화 된 RGB 칼라 모델을 이용하여 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 갖는 영역을 제거한다. 마지막으로, 배경으로 인식되어 전경으로부터 제거된 부분을 입력 영상의 공간상 정보인 spatial gradient와 HSI 칼라 모델을 이용하여 복구하는 방법을 제안한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 실내 외 환경에서의 실험을 통해 그 응용 가능성을 증명한다.

딥 러닝 기반의 영상처리 기법을 이용한 겹침 돼지 분리 (Separation of Occluding Pigs using Deep Learning-based Image Processing Techniques)

  • 이한해솔;사재원;신현준;정용화;박대희;김학재
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.136-145
    • /
    • 2019
  • The crowded environment of a domestic pig farm is highly vulnerable to the spread of infectious diseases such as foot-and-mouth disease, and studies have been conducted to automatically analyze behavior of pigs in a crowded pig farm through a video surveillance system using a camera. Although it is required to correctly separate occluding pigs for tracking each individual pigs, extracting the boundaries of the occluding pigs fast and accurately is a challenging issue due to the complicated occlusion patterns such as X shape and T shape. In this study, we propose a fast and accurate method to separate occluding pigs not only by exploiting the characteristics (i.e., one of the fast deep learning-based object detectors) of You Only Look Once, YOLO, but also by overcoming the limitation (i.e., the bounding box-based object detector) of YOLO with the test-time data augmentation of rotation. Experimental results with two-pigs occlusion patterns show that the proposed method can provide better accuracy and processing speed than one of the state-of-the-art widely used deep learning-based segmentation techniques such as Mask R-CNN (i.e., the performance improvement over Mask R-CNN was about 11 times, in terms of the accuracy/processing speed performance metrics).

호흡 강도에 따른 수면 호흡 유형 분석 (Analysis of Sleep Breathing Type According to Breathing Strength)

  • 강윤주;정성오;국중진
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.1-5
    • /
    • 2021
  • Sleep apnea refers to a condition in which a person does not breathe during sleep, and is a dangerous symptom that blocks oxygen supply in the body, causing various complications, and the elderly and infants can die if severe. In this paper, we present an algorithm that classifies sleep breathing by analyzing the intensity of breathing with images alone in preparation for the risk of sleep apnea. Only the chest of the person being measured is set to the Region of Interest (ROI) to determine the breathing strength by the differential image within the corresponding ROI area. The adult was selected as the target of the measurement and the breathing strength was measured accurately, and the difference in breathing intensity was also distinguished using depth information. Two videos of sleeping babies also show that even microscopic breathing motions smaller than adults can be detected, which is also expected to help prevent infant death syndrome (SIDS).

Anomaly detection of isolating switch based on single shot multibox detector and improved frame differencing

  • Duan, Yuanfeng;Zhu, Qi;Zhang, Hongmei;Wei, Wei;Yun, Chung Bang
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.811-825
    • /
    • 2021
  • High-voltage isolating switches play a paramount role in ensuring the safety of power supply systems. However, their exposure to outdoor environmental conditions may cause serious physical defects, which may result in great risk to power supply systems and society. Image processing-based methods have been used for anomaly detection. However, their accuracy is affected by numerous uncertainties due to manually extracted features, which makes the anomaly detection of isolating switches still challenging. In this paper, a vision-based anomaly detection method for isolating switches, which uses the rotational angle of the switch system for more accurate and direct anomaly detection with the help of deep learning (DL) and image processing methods (Single Shot Multibox Detector (SSD), improved frame differencing method, and Hough transform), is proposed. The SSD is a deep learning method for object classification and localization. In addition, an improved frame differencing method is introduced for better feature extraction and a hough transform method is adopted for rotational angle calculation. A number of experiments are conducted for anomaly detection of single and multiple switches using video frames. The results of the experiments demonstrate that the SSD outperforms the You-Only-Look-Once network. The effectiveness and robustness of the proposed method have been proven under various conditions, such as different illumination and camera locations using 96 videos from the experiments.

Vehicle-Level Traffic Accident Detection on Vehicle-Mounted Camera Based on Cascade Bi-LSTM

  • Son, Hyeon-Cheol;Kim, Da-Seul;Kim, Sung-Young
    • 한국정보기술학회 영문논문지
    • /
    • 제10권2호
    • /
    • pp.167-175
    • /
    • 2020
  • In this paper, we propose a traffic accident detection on vehicle-mounted camera. In the proposed method, the minimum bounding box coordinates the central coordinates on the bird's eye view and motion vectors of each vehicle object, and ego-motions of the vehicle equipped with dash-cam are extracted from the dash-cam video. By using extracted 4 kinds features as the input of Bi-LSTM (bidirectional LSTM), the accident probability (score) is predicted. To investigate the effect of each input feature on the probability of an accident, we analyze the performance of the detection the case of using a single feature input and the case of using a combination of features as input, respectively. And in these two cases, different detection models are defined and used. Bi-LSTM is used as a cascade, especially when a combination of the features is used as input. The proposed method shows 76.1% precision and 75.6% recall, which is superior to our previous work.

중요지역 보안을 위한 조명환경 적응형 실시간 영상 감시 시스템 (Illumination Environment Adaptive Real-time Video Surveillance System for Security of Important Area)

  • 안성진;이관희;권구락;김남형;고성제
    • 대한전자공학회논문지SP
    • /
    • 제44권2호
    • /
    • pp.116-125
    • /
    • 2007
  • 본 논문에서는 군대 주둔지 교도소 전략적 산업구조물 등 중요한 지역의 보안을 위한 조명환경 적응적인 실시간 영상 감시 시스템을 제안한다. 제안하는 시스템은 밝은 환경에서 뿐만 아니라 객체 판별이 어려운 어두운 환경에서도 객체 추출이 추적이 가능하도록 구현하며 그 절차는 다음과 같다. 첫 번째 단계에서는 입력 영상의 분포를 판별하여 전처리 여부를 판단하고 입력 영상이 어두워 객체 탐지가 어렵다고 판단되는 경우에는 Multi-scale Reinex Color Restoration (MSRCR) 과정을 거처 보정된 입력 영상을 얻는다. 두 번째 단계인 객체 정보 획득 과정에서는 정확한 객체의 추출을 위해 보정된 배경영상과 입력 영상과의 차영상을 이용하여 객체를 탐지하고 이진화 및 모폴로지 등 기본적인 영상처리 작업을 통하여 정확하게 객체를 추출한다. 마지막 단계에서는 추출된 객체의 중심점을 이용하여 좀 더 정확하게 객체를 추적할 수 있도록 한다. 실험 결과에서 제안하는 시스템은 어두운 환경에서 객체의 빠른 움직임에도 불구하고 효율적인 객체 탐지 및 추적을 수행한다.

콘크리트 표면 균열 실링을 위한 로봇의 제어 방법에 관한 연구 (A Study on Control of Sealing Robot for Cracks of Concrete Surface)

  • 조철주;임계영
    • 대한토목학회논문집
    • /
    • 제35권2호
    • /
    • pp.481-491
    • /
    • 2015
  • 콘크리트 표면에 발생된 균열은 구조물의 수명에 영향을 미치는 주요원인으로 작용하기 때문에 주기적인 검사와 유지관리가 필요하다. 콘크리트 표면 유지관리를 위한 실링작업은 표면에 발생된 균열을 초기에 보수하는 방법으로 시간 경과에 따른 균열의 추가생성 및 확산을 방지하는데 효과적이다. 하지만, 교량 하부의 실링작업은 열악한 작업환경으로 인하여 작업자들의 안전성 확보에 문제가 있다. 이런 이유로, 콘크리트 구조물의 유지관리를 위한 실링자동화의 필요성이 부각되고 있다. 본 논문은 콘크리트 교량 하부에 발생된 균열의 실링작업에 로봇을 적용하기 위한 두 가지 제어방법에 대하여 제안한다. 하나는, 균열의 궤적을 자동으로 추적하는 방법이다. 로봇은 카메라로부터 취득되는 영상정보로 균열의 궤적을 파악하는데, 이전 시점의 궤적 정보를 통하여 다음 이동할 시점의 정보를 유추할 수 있다면, 실시간으로 변동되는 궤적 정보에 대응이 가능하면서 자동으로 균열을 추적할 수 있다. 다른 하나는 접촉면에 일정한 힘을 유지하여 실링하는 방법이다. 장기간 외부 환경에 노출된 거친 표면에서도 로봇이 일정한 접촉력을 유지하며 실링작업을 수행한다면, 균등한 완성도를 유지할 수 있다. 이러한 균일한 힘의 유지를 위하여 임피던스를 이용한 힘 제어 기법을 제안한다. 본 논문에서는 실링 로봇에 적용하기 위하여 개발한 두 가지 제어기법들을 소개하고, 그것을 적용한 Lab Test와 Field Test를 수행한다. 이 시험결과를 토대로 로봇의 현장적용에 대한 의견을 제시한다.

실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구 (Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring)

  • 최우철;나준엽
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.546-554
    • /
    • 2019
  • 본 논문에서는 CCTV를 통해 실시간 범죄에 대응할 수 있도록 CCTV 카메라 간 협업이 가능한 기술과 이를 활용한 실시간 범죄대응 서비스에 대해 연구하였다. 본 연구에서 개발하고자 하는 CCTV 협업 기술은 한 곳의 CCTV에서 추출된 이동 객체(용의자)가 범위를 벗어나 다른 CCTV로 이동했을 때 객체의 유사도 정보를 관제자에게 전달하여 선택된 객체를 추적하는 프로그램 모델이다. 일련의 유사도 정보 획득 과정은 객체 감지(object detection), 사전 분류(pre-classification), 특징 추출(feature extraction), 분류(classification)의 4단계의 프로세스로 진행된다. 이는 주로 사후처리용으로 사용되던 CCTV 모니터링을 긴박한 실시간 범죄에 대응하도록 개선시켜 범죄발생 초기대응 체계를 강화 할 수 있다. 또한 관제요원의 모니터링에만 의존하는 CCTV 관제시스템을 부분 자동화하여 지자체 관제센터 운영효율성을 증대시킬 수 있다. 해당 기술 및 서비스는 안양시 테스트베드에 구축하여 시범운영할 예정으로, 서비스가 안정화가 되면 전국 지자체에 확산하여 상용화가 될 것으로 예상된다. 향후 CCTV 협업 뿐 아니라 실시간 개인 정밀위치결정, 스마트폰 연계 등 통합 방범서비스 연구가 진행되어 시민들이 보다 안전한 생활을 영위할 수 있기를 기대한다.

통계학적 학습을 이용한 머리와 어깨선의 위치 찾기 (Localizing Head and Shoulder Line Using Statistical Learning)

  • 권무식
    • 한국통신학회논문지
    • /
    • 제32권2C호
    • /
    • pp.141-149
    • /
    • 2007
  • 영상에서 사람의 머리위치를 찾는 문제에 있어서 어깨선 정보를 이용하는 것은 아주 유용하다. 영상에서 머리 외곽선과 어깨선의 형태는 일정한 변형을 유지하면서 같이 움직이므로 이를 ASM(Active Shape Model) 기법을 사용해서 통계적으로 모델링 할 수 있다. 그러나 ASM 모델은 국부적인 에지나 그래디언트에 의존하므로 배경 에지나 클러터 성분에 민감하다. 한편 AAM(Active Appearance Model) 모델은 텍스쳐 등을 이용하지만, 사람의 피부색, 머리색깔, 옷 색깔 등의 차이로 인해서 통계적인 학습방법을 쓰기가 어렵고, 전체 비디오에서 외모(Appearance)가 시간적으로 변한다. 따라서, 본 논문에서는 외모(Apperance) 모델을 변화에 따라 바꾸는 대신, 영상의 각 화소를 머리, 어깨, 배경으로 구분하는 분별적 외모 모델(discriminative appearance)를 사용한다. 실험을 통해서 제안된 방법이 기존의 기법에 비해서 포즈변화와 가려짐, 조명의 변화 등에 강인함을 보여준다. 또한 제안된 기법은 실시간으로 작동하는 장점 또한 가진다.

CCTV 영상을 활용한 동적 객체의 위치 추적 및 시각화 방안 (Location Tracking and Visualization of Dynamic Objects using CCTV Images)

  • 박상진;조국;임준혁;김민찬
    • 지적과 국토정보
    • /
    • 제51권1호
    • /
    • pp.53-65
    • /
    • 2021
  • 국내·외적으로 수행되고 있는 다양한 C-ITS 관련 도로 인프라 구축 사업들은 다양한 센서 기술들을 융합적으로 활용하고 있으며, 도로 인프라의 효율성과 신뢰성을 높이기 위해 센서 관련 기술 향상에 많은 노력을 하고 있다. 최근에는 인공지능 기술의 발전으로 영상정보를 수집하는 CCTV의 역할은 더욱 중요해지고 있다. CCTV는 현재 도로 상태 및 상황, 보안 등의 이유로 많은 양이 구축되어 운영되고 있으나, 단순한 영상 모니터링에 주로 활용되고 있어 자율주행 측면에서 센서들에 비해 활용도가 부족한 실정이다. 본 연구에서는 기구축된 CCTV영상에서 이동체(차량·사람 등)들을 식별·추적하고, 이들의 정보를 다양한 환경에서 활용할 수 있도록 분석·제공하는 방안을 제안한다. 이를 위해 Yolov4와 Deep sort 알고리즘을 활용한 이동체 식별·추적과 Kafka 기반의 실시간 다중 사용자 지원 서버 구축, 영상과 공간 좌표계 간의 변환 행렬 정의, 그리고 정밀도로지도, 항공맵 등을 활용한 맵기반 이동체 시각화를 진행하였으며, 유용성을 확인하기 위한 위치 정합도 평가를 수행하였다. 제안된 방안을 통해 CCTV가 단순한 모니터링 역할을 넘어 도로 인프라 측면에서 도로 상황을 실시간으로 분석하여 관련 정보를 제공할 수 있는 중요한 센서로써의 역할을 할 수 있음을 확인하였다.