• Title/Summary/Keyword: Video tracking

Search Result 611, Processing Time 0.03 seconds

Multiple Object Tracking with Color-Based Particle Filter for Intelligent Space (공간지능화를 위한 색상기반 파티클 필터를 이용한 다중물체추적)

  • Jin, Tae-Seok;Hashimoto, Hideki
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

  • PDF

Multi-Object Tracking using the Color-Based Particle Filter in ISpace with Distributed Sensor Network

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • Intelligent Space(ISpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Simulations are carried out to evaluate the proposed performance. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

Disjoint Particle Filter to Track Multiple Objects in Real-time

  • Chai, YoungJoon;Hong, Hyunki;Kim, TaeYong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1711-1725
    • /
    • 2014
  • Multi-target tracking is the main purpose of many video surveillance applications. Recently, multi-target tracking based on the particle filter method has achieved robust results by using the data association process. However, this method requires many calculations and it is inadequate for real time applications, because the number of associations exponentially increases with the number of measurements and targets. In this paper, to reduce the computational cost of the data association process, we propose a novel multi-target tracking method that excludes particle samples in the overlapped predictive region between the target to track and marginal targets. Moreover, to resolve the occlusion problem, we define an occlusion mode with the normal dynamic mode. When the targets are occluded, the mode is switched to the occlusion mode and the samples are propagated by Gaussian noise without the sampling process of the particle filter. Experimental results demonstrate the robustness of the proposed multi-target tracking method even in occlusion.

Visual Tracking using Weighted Discriminative Correlation Filter

  • Song, Tae-Eun;Jang, Kyung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.49-57
    • /
    • 2016
  • In this paper, we propose the novel tracking method which uses the weighted discriminative correlation filter (DCF). We also propose the PSPR instead of conventional PSR as tracker performance evaluation method. The proposed tracking method uses multiple DCF to estimates the target position. In addition, our proposed method reflects more weights on the correlation response of the tracker which is expected to have more performance using PSPR. While existing multi-DCF-based tracker calculates the final correlation response by directly summing correlation responses from each tracker, the proposed method acquires the final correlation response by weighted combining of correlation responses from the selected trackers robust to given environment. Accordingly, the proposed method can provide high performance tracking in various and complex background compared to multi-DCF based tracker. Through a series of tracking experiments for various video data, the presented method showed better performance than a single feature-based tracker and also than a multi-DCF based tracker.

Accelerating particle filter-based object tracking algorithms using parallel programming

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.469-470
    • /
    • 2018
  • Object tracking is a common task in computer vision, an essential part of various vision-based applications. After several years of development, object tracking in video is still a challenging problem because of various visual properties of objects and surrounding environment. Particle filter is a well-known technique among common approaches, has been proven its effectiveness in dealing with difficulties in object tracking. However, particle filter is a high-complexity algorithms, which is an severe disadvantage because object tracking algorithms are required to run in real time. In this research, we utilize parallel programming to accelerate particle filter-based object tracking algorithms. Experimental results showed that our approach reduced the execution time significantly.

Object Feature Tracking Algorithm based on Siame-FPN (Siame-FPN기반 객체 특징 추적 알고리즘)

  • Kim, Jong-Chan;Lim, Su-Chang
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.247-256
    • /
    • 2022
  • Visual tracking of selected target objects is fundamental challenging problems in computer vision. Object tracking localize the region of target object with bounding box in the video. We propose a Siam-FPN based custom fully CNN to solve visual tracking problems by regressing the target area in an end-to-end manner. A method of preserving the feature information flow using a feature map connection structure was applied. In this way, information is preserved and emphasized across the network. To regress object region and to classify object, the region proposal network was connected with the Siamese network. The performance of the tracking algorithm was evaluated using the OTB-100 dataset. Success Plot and Precision Plot were used as evaluation matrix. As a result of the experiment, 0.621 in Success Plot and 0.838 in Precision Plot were achieved.

Real-time Zoom Tracking for DM36x-based IP Network Camera

  • Cong, Bui Duy;Seol, Tae In;Chung, Sun-Tae;Kang, HoSeok;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1261-1271
    • /
    • 2013
  • Zoom tracking involves the automatic adjustment of the focus motor in response to the zoom motor movements for the purpose of keeping an object of interest in focus, and is typically achieved by moving the zoom and focus motors in a zoom lens module so as to follow the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. Thus, one can simply implement zoom tracking by following the most closest trace curve after all the trace curve data are stored in memory. However, this approach is often prohibitive in practical implementation because of its large memory requirement. Many other zoom tracking methods such as GZT, AZT and etc. have been proposed to avoid large memory requirement but with a deteriorated performance. In this paper, we propose a new zoom tracking method called 'Approximate Feedback Zoom Tracking method (AFZT)' on DM36x-based IP network camera, which does not need large memory by approximating nearby trace curves, but generates better zoom tracking accuracy than GZT or AZT by utilizing focus value as feedback information. Experiments through real implementation shows the proposed zoom tracking method improves the tracking performance and works in real-time.

Design and Implementation of ONVIF Video Analytics Service for a Smart IP Network camera (Smart IP 네트워크 카메라의 비디오 내용 분석 서비스 설계 및 구현)

  • Nguyen, Vo Thanh Phu;Nguyen, Thanh Binh;Chung, Sun-Tae;Kang, Ho-Seok
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.102-105
    • /
    • 2012
  • ONVIF is becoming a de factor standard specification for supporting interoperability among network video products, which also supports a specification for video analytics service. A smart IP network camera is an IP network supporting video analytics. In this paper, we present our efforts in integrating ONVIF Video Analytics Service into our currently developing smart IP network camera(SS IPNC; Soongsil Smart IP Network Camera). SSIPNC supports object detection, tracking, classification, and event detection with proprietary configuration protocol and meta data formats. SSIPNC is based on TI' IPNC ONVIF implementation which supports ONVI Core specification, and several ONVIF services such as device service, imaging service and media service, but not video analytics service.

  • PDF

A RESEARCH FOR THE ANALYSIS AND THE COUNTERPLAN OF THE VIDEO LECTURINC (원격화상 강의수업의 분석 및 대응방안에 관한 연구)

  • 신용삼;장종욱
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.81-85
    • /
    • 2002
  • Through the questionnaire, I analyzed the merit, the defect and the solution of problems of the lecture using the Video Lecturing System. In the paper, we present that the Video Lecturing is a substitute tracking method by demonstrating the superiority of it. For tile purpose of this, I compared and analyzed the Video Lecturing with the general lecture from the viewpoint of the class satisfaction and the effectiveness through the results of the questionnaire obtained by students who took the Video Lecturing class.

  • PDF

Implementation of Smart Video Surveillance System Based on Safety Map (안전지도와 연계한 지능형 영상보안 시스템 구현)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.169-174
    • /
    • 2018
  • There are many CCTV cameras connected to the video surveillance and monitoring center for the safety of citizens, and it is difficult for a few monitoring agents to monitor many channels of videos. In this paper, we propose an intelligent video surveillance system utilizing a safety map to efficiently monitor many channels of CCTV camera videos. The safety map establishes the frequency of crime occurrence as a database, expresses the degree of crime risk and makes it possible for agents of the video surveillance center to pay attention when a woman enters the crime risk area. The proposed gender classification method is processed in the order of pedestrian detection, tracking and classification with deep training. The pedestrian detection and tracking uses Adaboost algorithm and probabilistic data association filter, respectively. In order to classify the gender of the pedestrian, relatively simple AlexNet is applied to determine gender. Experimental results show that the proposed gender classification method is more effective than the conventional algorithm. In addition, the results of implementation of intelligent video security system combined with safety map are introduced.