• Title/Summary/Keyword: Video extraction

Search Result 466, Processing Time 0.02 seconds

Spatial and Temporal Resolution Selection for Bit Stream Extraction in H.264 Scalable Video Coding (H.264 SVC에서 비트 스트림 추출을 위한 공간과 시간 해상도 선택 기법)

  • Kim, Nam-Yun;Hwang, Ho-Young
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.102-110
    • /
    • 2010
  • H.264 SVC(Scalable Video Coding) provides the advantages of low disk storage requirement and high scalability. However, a streaming server or a user terminal has to extract a bit stream from SVC file. This paper proposes a bit stream extraction method which can get the maximum PSNR value while date bit rate does not exceed the available network bandwidth. To do this, this paper obtains the information about extraction points which can get the maximum PSNR value offline and decides the spatial/temporal resolution of a bit stream at run-time. This resolution information along with available network bandwidth is used as the parameters to a bit stream extractor. Through experiment with JSVM reference software, we proved that proposed bit stream extraction method can get a higher PSNR value.

Moving Object Extraction Based on Block Motion Vectors (블록 움직임벡터 기반의 움직임 객체 추출)

  • Kim Dong-Wook;Kim Ho-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1373-1379
    • /
    • 2006
  • Moving object extraction is one of key research topics for various video services. In this study, a new moving object extraction algorithm is introduced to extract objects using block motion vectors in video data. To do this, 1) a maximum a posteriori probability and Gibbs random field are used to obtain real block motion vectors,2) a 2-D histogram technique is used to determine a global motion, 3) additionally, a block segmentation is fellowed. In the computer simulation results, the proposed technique shows a good performance.

Caption Extraction in News Video Sequence using Frequency Characteristic

  • Youglae Bae;Chun, Byung-Tae;Seyoon Jeong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.835-838
    • /
    • 2000
  • Popular methods for extracting a text region in video images are in general based on analysis of a whole image such as merge and split method, and comparison of two frames. Thus, they take long computing time due to the use of a whole image. Therefore, this paper suggests the faster method of extracting a text region without processing a whole image. The proposed method uses line sampling methods, FFT and neural networks in order to extract texts in real time. In general, text areas are found in the higher frequency domain, thus, can be characterized using FFT The candidate text areas can be thus found by applying the higher frequency characteristics to neural network. Therefore, the final text area is extracted by verifying the candidate areas. Experimental results show a perfect candidate extraction rate and about 92% text extraction rate. The strength of the proposed algorithm is its simplicity, real-time processing by not processing the entire image, and fast skipping of the images that do not contain a text.

  • PDF

Fast Video Detection Using Temporal Similarity Extraction of Successive Spatial Features (연속하는 공간적 특징의 시간적 유사성 검출을 이용한 고속 동영상 검색)

  • Cho, A-Young;Yang, Won-Keun;Cho, Ju-Hee;Lim, Ye-Eun;Jeong, Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.929-939
    • /
    • 2010
  • The growth of multimedia technology forces the development of video detection for large database management and illegal copy detection. To meet this demand, this paper proposes a fast video detection method to apply to a large database. The fast video detection algorithm uses spatial features using the gray value distribution from frames and temporal features using the temporal similarity map. We form the video signature using the extracted spatial feature and temporal feature, and carry out a stepwise matching method. The performance was evaluated by accuracy, extraction and matching time, and signature size using the original videos and their modified versions such as brightness change, lossy compression, text/logo overlay. We show empirical parameter selection and the experimental results for the simple matching method using only spatial feature and compare the results with existing algorithms. According to the experimental results, the proposed method has good performance in accuracy, processing time, and signature size. Therefore, the proposed fast detection algorithm is suitable for video detection with the large database.

A Robust Algorithm for Moving Object Segmentation and VOP Extraction in Video Sequences (비디오 시퀸스에서 움직임 객체 분할과 VOP 추출을 위한 강력한 알고리즘)

  • Kim, Jun-Ki;Lee, Ho-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.430-441
    • /
    • 2002
  • Video object segmentation is an important component for object-based video coding scheme such as MPEG-4. In this paper, a robust algorithm for segmentation of moving objects in video sequences and VOP(Video Object Planes) extraction is presented. The points of this paper are detection, of an accurate object boundary by associating moving object edge with spatial object edge and generation of VOP. The algorithm begins with the difference between two successive frames. And after extracting difference image, the accurate moving object edge is produced by using the Canny algorithm and morphological operation. To enhance extracting performance, we app]y the morphological operation to extract more accurate VOP. To be specific, we apply morphological erosion operation to detect only accurate object edges. And moving object edges between two images are generated by adjusting the size of the edges. This paper presents a robust algorithm implementation for fast moving object detection by extracting accurate object boundaries in video sequences.

Major Character Extraction using Character-Net (Character-Net을 이용한 주요배역 추출)

  • Park, Seung-Bo;Kim, Yoo-Won;Jo, Geun-Sik
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.85-102
    • /
    • 2010
  • In this paper, we propose a novel method of analyzing video and representing the relationship among characters based on their contexts in the video sequences, namely Character-Net. As a huge amount of video contents is generated even in a single day, the searching and summarizing technologies of the contents have also been issued. Thereby, a number of researches have been proposed related to extracting semantic information of video or scenes. Generally stories of video, such as TV serial or commercial movies, are made progress with characters. Accordingly, the relationship between the characters and their contexts should be identified to summarize video. To deal with these issues, we propose Character-Net supporting the extraction of major characters in video. We first identify characters appeared in a group of video shots and subsequently extract the speaker and listeners in the shots. Finally, the characters are represented by a form of a network with graphs presenting the relationship among them. We present empirical experiments to demonstrate Character-Net and evaluate performance of extracting major characters.

The Extracting Method of Key-frame Using Color Layout Descriptor (컬러 레이아웃을 이용한 키 프레임 추출 기법)

  • 김소희;김형준;지수영;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.213-216
    • /
    • 2001
  • Key frame extraction is an important method of summarizing a long video. This paper propose a technique to automatically extract several key frames representative of its content from video. We use the color layout descriptor to select key frames from video. For selection of key frames, we calculate similarity of color layout features extracted from video, and extract key frames using similarity. An important aspect of our algorithm is that does not assume a fixed number of key frames per video; instead, it selects the number of appropriate key frames of summarizing a long video Experimental results show that our method using color layout descriptor can successfully select several key frames from a video, and we confirmed that the processing speed for extracting key frames from video is considerably fast.

  • PDF

3D Visual Attention Model and its Application to No-reference Stereoscopic Video Quality Assessment (3차원 시각 주의 모델과 이를 이용한 무참조 스테레오스코픽 비디오 화질 측정 방법)

  • Kim, Donghyun;Sohn, Kwanghoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.110-122
    • /
    • 2014
  • As multimedia technologies develop, three-dimensional (3D) technologies are attracting increasing attention from researchers. In particular, video quality assessment (VQA) has become a critical issue in stereoscopic image/video processing applications. Furthermore, a human visual system (HVS) could play an important role in the measurement of stereoscopic video quality, yet existing VQA methods have done little to develop a HVS for stereoscopic video. We seek to amend this by proposing a 3D visual attention (3DVA) model which simulates the HVS for stereoscopic video by combining multiple perceptual stimuli such as depth, motion, color, intensity, and orientation contrast. We utilize this 3DVA model for pooling on significant regions of very poor video quality, and we propose no-reference (NR) stereoscopic VQA (SVQA) method. We validated the proposed SVQA method using subjective test scores from our results and those reported by others. Our approach yields high correlation with the measured mean opinion score (MOS) as well as consistent performance in asymmetric coding conditions. Additionally, the 3DVA model is used to extract information for the region-of-interest (ROI). Subjective evaluations of the extracted ROI indicate that the 3DVA-based ROI extraction outperforms the other compared extraction methods using spatial or/and temporal terms.

Methods for Video Caption Extraction and Extracted Caption Image Enhancement (영화 비디오 자막 추출 및 추출된 자막 이미지 향상 방법)

  • Kim, So-Myung;Kwak, Sang-Shin;Choi, Yeong-Woo;Chung, Kyu-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.235-247
    • /
    • 2002
  • For an efficient indexing and retrieval of digital video data, research on video caption extraction and recognition is required. This paper proposes methods for extracting artificial captions from video data and enhancing their image quality for an accurate Hangul and English character recognition. In the proposed methods, we first find locations of beginning and ending frames of the same caption contents and combine those multiple frames in each group by logical operation to remove background noises. During this process an evaluation is performed for detecting the integrated results with different caption images. After the multiple video frames are integrated, four different image enhancement techniques are applied to the image: resolution enhancement, contrast enhancement, stroke-based binarization, and morphological smoothing operations. By applying these operations to the video frames we can even improve the image quality of phonemes with complex strokes. Finding the beginning and ending locations of the frames with the same caption contents can be effectively used for the digital video indexing and browsing. We have tested the proposed methods with the video caption images containing both Hangul and English characters from cinema, and obtained the improved results of the character recognition.

A new approach for content-based video retrieval

  • Kim, Nac-Woo;Lee, Byung-Tak;Koh, Jai-Sang;Song, Ho-Young
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.24-28
    • /
    • 2008
  • In this paper, we propose a new approach for content-based video retrieval using non-parametric based motion classification in the shot-based video indexing structure. Our system proposed in this paper has supported the real-time video retrieval using spatio-temporal feature comparison by measuring the similarity between visual features and between motion features, respectively, after extracting representative frame and non-parametric motion information from shot-based video clips segmented by scene change detection method. The extraction of non-parametric based motion features, after the normalized motion vectors are created from an MPEG-compressed stream, is effectively fulfilled by discretizing each normalized motion vector into various angle bins, and by considering the mean, variance, and direction of motion vectors in these bins. To obtain visual feature in representative frame, we use the edge-based spatial descriptor. Experimental results show that our approach is superior to conventional methods with regard to the performance for video indexing and retrieval.