In this paper, we propose a semi-automatic method for semantic video object extraction which extracts meaningful objects from an input sequence with one correctly segmented training image. Given one correctly segmented image acquired by the user's interaction in the first frame, the proposed method automatically segments and tracks the objects in the following frames. We formulate the semantic object extraction procedure as an energy minimization problem at the fragment level instead of pixel level. The proposed energy function consists of two terms: data term and smoothness term. The data term is computed by considering patch similarity, color, and motion information. Then, the smoothness term is introduced to enforce the spatial continuity. Finally, iterated conditional modes (ICM) optimization is used to minimize energy function in a globally optimal manner. The proposed semantic video object extraction method provides faithful results for various types of image sequences.
Video data is usually stored in a compressed format in order to reduce the storage space. For efficient browsing, searching, and retrieval of compressed video sequences, size-reduced images (or DC images which are formed with block DC coefficients) are generally preferred to avoid unnecessary computational complexity. In this paper, we propose a DC image extraction scheme appropriate for scene analysis and efficient browsing of compressed video sequences. The proposed algorithm utilizes predicted low frequency AC coefficients to achieve better approximation and to reduce the error drift. Due to the AC prediction based on a quadratic surface model, the proposed scheme requires no additional memory compared with the previous zero-order or first-order approximation scheme. Simulation results show that the proposed scheme achieves better subjective and objective quality with minor additional operations.
본 연구에서는 먼저 영상 초록의 배열 모형을 영상물의 소통 구조 이론, FRBR 모형 및 용어간의 구문적 및 어의적 관계를 고려하는 PRECIS 색인 이론 등을 이용하여 설계하고 이 모형에 따라서 영상 초록을 구성한 후 순차적 영상 초록과 요약문과 색인어 추출의 정확도 측면에서 어떤 차이를 보이는지 6개의 표본 비디오와 26명의 피조사자를 이용하여 실험을 통해서 조사해 보았다. 조사 결과, 배열 모형 기반 영상 초록이 순차적 영상 보다 더 정확한 요약문을 추출하는 것으로 나타났고 색인어 추출의 정확도는 큰 차이가 없는 것으로 나타났다. 또한 영상 초록의 반복 보기의 효과를 측정한 결과 순차적 영상 초록을 먼저 보고 배열 모형 영상초록을 반복해서 본 경우에 요약문의 정확도가 크게 증가하는 것으로 나타났다. 이러한 실험 결과에 기초하여 디지털 비디오 도서관 환경에서 영상 초록의 두 가지 활용 방안 즉, OPAC 환경에서 영상 초록의 초기값으로 순차적 영상 초록을 제시하고 선택을 통해서 배열 모형 기반 영상 초록이 함께 출력되는 비디오 브라우징 인터페이스를 구성하는 것과 제안된 배열 모형 기반 영상 초록을 영상 질의의 구조화된 매칭 자료로 활용하는 것에 대해서 제안하였다.
In this paper, we propose an algorithm for generating panoramic videos using fixed multiple cameras. We estimate a background image from each camera. Then we calculate perspective relationships between images using extracted feature points. To eliminate stitching errors due to different image depths, we process background images and foreground images separately in the overlap regions between adjacent cameras by projecting regions of foreground images selectively. The proposed algorithm can be used to enhance the efficiency and convenience of wide-area surveillance systems.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권8호
/
pp.3806-3825
/
2016
This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose we intent to hitch on BOVW and Mapreduce in 3D framework. Here, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and produce results .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we fiture the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.
본 논문에서는 차량 내의 멀티미디어 시스템에 장착되는 엔터테인먼트 기능 중의 하나인 음악스토리 자동생성 기술을 소개한다. 음악스토리 비디오 자동생성 기술은 개인이 소지하고 있는 휴대폰을 차량 내의 멀티미디어 시스템과 연결하여, 휴대폰 안에 저장된 음악과 사진의 결합을 통해 음악비디오를 자동으로 생성하는 멀티미디어 요소기술로서, 사용자에게 분위기에 맞게 음악을 들으면서 생성된 음악스토리 비디오를 즐기는 기능을 제공한다. 음악스토리 비디오 자동생성 기술에 대한 성능은 음악분류, 사진분류, 핵심단어 검출 등의 정확도와 생성된 음악스토리 비디오를 시청한 사용자의 MOS 결과를 통해 측정되었다.
본 논문에서는 내용 기반 동영상 검색을 위하여 컬러 정보 및 모션 정보를 사용하는 효율적인 자동 특징 추출 알고리즘을 제안하고, 이를 동영상 검색 시스템에 적용한다. 컬러 정보의 경우 기존의 key-frame단위의 컬러 특징 추출의 한계를 극복하고, 동영상의 컬러 히스토그램 정보와 컬러의 공간분포 정보를 반영할 수 있는 컬러 특징 추출 알고리즘을 제안한다. 또한 MPEG-1 동영상 내의 모션 벡터와 컬러 정보를 조합한 컬러-모션 특징을 추출하여, 기존의 위치 기반 특징 추출 알고리즘의 한계를 극복하였다. 최종적으로 추출된 특징을 이용한 검색 시스템을 구현하여, 제안된 알고리즘의 성능을 평가하였다.
실사 및 그래픽 기반 가상현실 콘텐츠는 360도 영상을 기반으로 하며, 시청자의 의도나 자동 추천 기능을 통한 뷰포트 추출이 필수적이다. 본 논문은 360도 영상에서 다중 객체 추적 기반의 뷰포트 추출 시스템을 설계하고, 다중 뷰포트 추출에 필요한 병렬화된 연산 구조를 제안한다. 360도 영상에서 뷰포트 추출 과정을 ERP 좌표의 3D 구 표면 좌표 변환과 3D 구 표면 좌표의 뷰포트 내 2D 좌표 변환 과정을 순서대로 픽셀 단위의 스레드로 구성하여 연산을 병렬화하였다. 제안 구조는 항공 360도 영상 시퀀스들에 대하여 최대 30개의 뷰포트 추출 과정에 대한 연산 시간이 평가되었으며, 뷰포트 수에 정비례하는 CPU 기반 연산 시간에 비해 최대 5240배 가속화됨을 확인하였다. ERP 프레임 I/O 시간을 줄일 수 있는 고속의 I/O나 메모리 버퍼를 사용 시 뷰포트 추출 시간을 7.82배 추가 가속화가 가능하다. 제안하는 뷰포트 추출 병렬화 구조는 360도 비디오나 가상현실 콘텐츠들에 대한 동시 다중 접속 서비스나 사용자별 영상 요약 서비스 등에 활용될 수 있다.
감정으로 인해 생기는 신체적 정신적인 변화는 운전이나 학습 행동 등 다양한 행동에 영향을 미칠 수 있다. 따라서 이러한 감정을 인식하는 것은 운전 중 위험한 감정 인식 및 제어 등 다양한 산업에서 이용될 수 있기 때문에 매우 중요한 과업이다. 본 논문에는 서로 도메인이 다른 음성과 영상 데이터를 모두 이용하여 감정을 인식하는 멀티모달 모델을 구현하여 감정 인식 연구를 진행했다. 본 연구에서는 RAVDESS 데이터를 이용하여 영상 데이터에 음성을 추출한 뒤 2D-CNN을 이용한 모델을 통해 음성 데이터 특징을 추출하였으며 영상 데이터는 Slowfast feature extractor를 통해 영상 데이터 특징을 추출하였다. 감정 인식을 위한 제안된 멀티모달 모델에서 음성 데이터와 영상 데이터의 특징 벡터를 통합하여 감정 인식을 시도하였다. 또한 멀티모달 모델을 구현할 때 많이 쓰인 방법론인 각 모델의 결과 스코어를 합치는 방법, 투표하는 방법을 이용하여 멀티모달 모델을 구현하고 본 논문에서 제안하는 방법과 비교하여 각 모델의 성능을 확인하였다.
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.230-240
/
2022
Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.