• Title/Summary/Keyword: Video biometric recognition

Search Result 16, Processing Time 0.027 seconds

Video Palmprint Recognition System Based on Modified Double-line-single-point Assisted Placement

  • Wu, Tengfei;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • Palmprint has become a popular biometric modality; however, palmprint recognition has not been conducted in video media. Video palmprint recognition (VPR) has some advantages that are absent in image palmprint recognition. In VPR, the registration and recognition can be automatically implemented without users' manual manipulation. A good-quality image can be selected from the video frames or generated from the fusion of multiple video frames. VPR in contactless mode overcomes several problems caused by contact mode; however, contactless mode, especially mobile mode, encounters with several revere challenges. Double-line-single-point (DLSP) assisted placement technique can overcome the challenges as well as effectively reduce the localization error and computation complexity. This paper modifies DLSP technique to reduce the invalid area in the frames. In addition, the valid frames, in which users place their hands correctly, are selected according to finger gap judgement, and then some key frames, which have good quality, are selected from the valid frames as the gallery samples that are matched with the query samples for authentication decision. The VPR algorithm is conducted on the system designed and developed on mobile device.

Human Iris Recognition using Wavelet Transform and Neural Network

  • Cho, Seong-Won;Kim, Jae-Min;Won, Jung-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.178-186
    • /
    • 2003
  • Recently, many researchers have been interested in biometric systems such as fingerprint, handwriting, key-stroke patterns and human iris. From the viewpoint of reliability and robustness, iris recognition is the most attractive biometric system. Moreover, the iris recognition system is a comfortable biometric system, since the video image of an eye can be taken at a distance. In this paper, we discuss human iris recognition, which is based on accurate iris localization, robust feature extraction, and Neural Network classification. The iris region is accurately localized in the eye image using a multiresolution active snake model. For the feature representation, the localized iris image is decomposed using wavelet transform based on dyadic Haar wavelet. Experimental results show the usefulness of wavelet transform in comparison to conventional Gabor transform. In addition, we present a new method for setting initial weight vectors in competitive learning. The proposed initialization method yields better accuracy than the conventional method.

Face Spoofing Attack Detection Using Spatial Frequency and Gradient-Based Descriptor

  • Ali, Zahid;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.892-911
    • /
    • 2019
  • Biometric recognition systems have been widely used for information security. Among the most popular biometric traits, there are fingerprint and face due to their high recognition accuracies. However, the security system that uses face recognition as the login method are vulnerable to face-spoofing attacks, from using printed photo or video of the valid user. In this study, we propose a fast and robust method to detect face-spoofing attacks based on the analysis of spatial frequency differences between the real and fake videos. We found that the effect of a spoofing attack stands out more prominently in certain regions of the 2D Fourier spectra and, therefore, it is adequate to use the information about those regions to classify the input video or image as real or fake. We adopt a divide-conquer-aggregate approach, where we first divide the frequency domain image into local blocks, classify each local block independently, and then aggregate all the classification results by the weighted-sum approach. The effectiveness of the methodology is demonstrated using two different publicly available databases, namely: 1) Replay Attack Database and 2) CASIA-Face Anti-Spoofing Database. Experimental results show that the proposed method provides state-of-the-art performance by processing fewer frames of each video.

Presentation Attacks in Palmprint Recognition Systems

  • Sun, Yue;Wang, Changkun
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2022
  • Background: A presentation attack places the printed image or displayed video at the front of the sensor to deceive the biometric recognition system. Usually, presentation attackers steal a genuine user's biometric image and use it for presentation attack. In recent years, reconstruction attack and adversarial attack can generate high-quality fake images, and have high attack success rates. However, their attack rates degrade remarkably after image shooting. Methods: In order to comprehensively analyze the threat of presentation attack to palmprint recognition system, this paper makes six palmprint presentation attack datasets. The datasets were tested on texture coding-based recognition methods and deep learning-based recognition methods. Results and conclusion: The experimental results show that the presentation attack caused by the leakage of the original image has a high success rate and a great threat; while the success rates of reconstruction attack and adversarial attack decrease significantly.

Multimodal Biometrics Recognition from Facial Video with Missing Modalities Using Deep Learning

  • Maity, Sayan;Abdel-Mottaleb, Mohamed;Asfour, Shihab S.
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.6-29
    • /
    • 2020
  • Biometrics identification using multiple modalities has attracted the attention of many researchers as it produces more robust and trustworthy results than single modality biometrics. In this paper, we present a novel multimodal recognition system that trains a deep learning network to automatically learn features after extracting multiple biometric modalities from a single data source, i.e., facial video clips. Utilizing different modalities, i.e., left ear, left profile face, frontal face, right profile face, and right ear, present in the facial video clips, we train supervised denoising auto-encoders to automatically extract robust and non-redundant features. The automatically learned features are then used to train modality specific sparse classifiers to perform the multimodal recognition. Moreover, the proposed technique has proven robust when some of the above modalities were missing during the testing. The proposed system has three main components that are responsible for detection, which consists of modality specific detectors to automatically detect images of different modalities present in facial video clips; feature selection, which uses supervised denoising sparse auto-encoders network to capture discriminative representations that are robust to the illumination and pose variations; and classification, which consists of a set of modality specific sparse representation classifiers for unimodal recognition, followed by score level fusion of the recognition results of the available modalities. Experiments conducted on the constrained facial video dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted in a 99.17% and 97.14% Rank-1 recognition rates, respectively. The multimodal recognition accuracy demonstrates the superiority and robustness of the proposed approach irrespective of the illumination, non-planar movement, and pose variations present in the video clips even in the situation of missing modalities.

Gait Recognition Based on GF-CNN and Metric Learning

  • Wen, Junqin
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1105-1112
    • /
    • 2020
  • Gait recognition, as a promising biometric, can be used in video-based surveillance and other security systems. However, due to the complexity of leg movement and the difference of external sampling conditions, gait recognition still faces many problems to be addressed. In this paper, an improved convolutional neural network (CNN) based on Gabor filter is therefore proposed to achieve gait recognition. Firstly, a gait feature extraction layer based on Gabor filter is inserted into the traditional CNNs, which is used to extract gait features from gait silhouette images. Then, in the process of gait classification, using the output of CNN as input, we utilize metric learning techniques to calculate distance between two gaits and achieve gait classification by k-nearest neighbors classifiers. Finally, several experiments are conducted on two open-accessed gait datasets and demonstrate that our method reaches state-of-the-art performances in terms of correct recognition rate on the OULP and CASIA-B datasets.

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.

Technical and Managerial Requirements for Privacy Protection Using Face Detection and Recognition in CCTV Systems (영상감시 시스템에서의 얼굴 영상 정보보호를 위한 기술적·관리적 요구사항)

  • Shin, Yong-Nyuo;Chun, Myung Geun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.97-106
    • /
    • 2014
  • CCTV(Closed Circuit television) is one of the widely used physical security technologies and video acquisition device installed at specific point with various purposes. Recently, as the CCTV capabilities improve, facial recognition from the information collected from CCTV video is under development. However, in case these technologies are exploited, concerns on major privacy infringement are high. Especially, a computer connected to a particular space images taken by the camera in real time over the Internet has emerged to show information services. In the privacy law, safety measures which is related with biometric template are notified. Accordingly, in this paper, for the protection of privacy video information in the video surveillance system, the technical and managerial requirements for video information security are suggested.

Research Trends for Deep Learning-Based High-Performance Face Recognition Technology (딥러닝 기반 고성능 얼굴인식 기술 동향)

  • Kim, H.I.;Moon, J.Y.;Park, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.43-53
    • /
    • 2018
  • As face recognition (FR) has been well studied over the past decades, FR technology has been applied to many real-world applications such as surveillance and biometric systems. However, in the real-world scenarios, FR performances have been known to be significantly degraded owing to variations in face images, such as the pose, illumination, and low-resolution. Recently, visual intelligence technology has been rapidly growing owing to advances in deep learning, which has also improved the FR performance. Furthermore, the FR performance based on deep learning has been reported to surpass the performance level of human perception. In this article, we discuss deep-learning based high-performance FR technologies in terms of representative deep-learning based FR architectures and recent FR algorithms robust to face image variations (i.e., pose-robust FR, illumination-robust FR, and video FR). In addition, we investigate big face image datasets widely adopted for performance evaluations of the most recent deep-learning based FR algorithms.

Design of an efficient learning-based face detection system (학습기반 효율적인 얼굴 검출 시스템 설계)

  • Kim Hyunsik;Kim Wantae;Park Byungjoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • Face recognition is a very important process in video monitoring and is a type of biometric technology. It is mainly used for identification and security purposes, such as ID cards, licenses, and passports. The recognition process has many variables and is complex, so development has been slow. In this paper, we proposed a face recognition method using CNN, which has been re-examined due to the recent development of computers and algorithms, and compared with the feature comparison method, which is an existing face recognition algorithm, to verify performance. The proposed face search method is divided into a face region extraction step and a learning step. For learning, face images were standardized to 50×50 pixels, and learning was conducted while minimizing unnecessary nodes. In this paper, convolution and polling-based techniques, which are one of the deep learning technologies, were used for learning, and 1,000 face images were randomly selected from among 7,000 images of Caltech, and as a result of inspection, the final recognition rate was 98%.