• 제목/요약/키워드: Video analysis algorithms

검색결과 85건 처리시간 0.022초

Low-complexity de-mapping algorithms for 64-APSK signals

  • Bao, Junwei;Xu, Dazhuan;Zhang, Xiaofei;Luo, Hao
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.308-315
    • /
    • 2019
  • Due to its high spectrum efficiency, 64-amplitude phase-shift keying (64-APSK) is one of the primary technologies used in deep space communications and digital video broadcasting through satellite-second generation. However, 64-APSK suffers from considerable computational complexity because of the de-mapping method that it employs. In this study, a low-complexity de-mapping method for (4 + 12 + 20 + 28) 64-APSK is proposed in which we take full advantage of the symmetric characteristics of each symbol mapping. Moreover, we map the detected symbol to the first quadrant and then divide the region in this first quadrant into several partitions to simplify the formula. Theoretical analysis shows that the proposed method requires no operation of exponents and logarithms and involves only multiplication, addition, subtraction, and judgment. Simulation results validate that the time consumption is dramatically decreased with limited degradation of bit error rate performance.

HOG 알고리즘과 CNN을 이용한 객체 검출 시스템에 관한 연구 (Research on Objects Tracking System using HOG Algorithm and CNN)

  • 박병준;김현식
    • 디지털산업정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.13-23
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis Detecting and tracking objects in continuous video is essential in self-driving cars, security and surveillance systems, sports analytics, medical image processing, and more. Correlation tracking methods such as Normalized Cross Correlation(NCC) and Sum of Absolute Differences(SAD) are used as an effective way to measure the similarity between two images. NCC, a representative correlation tracking method, has been useful in real-time environments because it is relatively simple to compute and effective. However, correlation tracking methods are sensitive to rotation and size changes of objects, making them difficult to apply to real-time changing videos. To overcome these limitations, this paper proposes an object tracking method using the Histogram of Oriented Gradients(HOG) feature to effectively obtain object data and the Convolution Neural Network(CNN) algorithm. By using the two algorithms, the shape and structure of the object can be effectively represented and learned, resulting in more reliable and accurate object tracking. In this paper, the performance of the proposed method is verified through experiments and its superiority is demonstrated.

Applicability and Adaptability of Gait-based Biometric Security System in GCC

  • S. M. Emdad Hossain
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.202-206
    • /
    • 2024
  • Robust system may not guaranty its applicability and adaptability. That is why research and development go together in the modern research concept. In this paper we are going to examine the applicability and adaptability of gait-based biometric identity verification system especially in the GCC (Gulf Cooperation Council). The system itself closely involved with human interaction where privacy and personality are in concern. As of 1st phase of our research we will establish gait-based identity verification system and then we will explain them in and out of human interaction with the system. With involved interaction we will conduct an extensive survey to find out both applicability and adoptability of the system. To conduct our experiment, we will use UCMG databased [1] which is readily available for the research community with more than three thousand video sequences in different viewpoint collected in various walking pattern and clothing. For the survey we will prepare questioners which will cover approach of data collection, potential traits to collect and possible consequences. For analyzing gait biometric trait, we will apply multivariate statistical classifier through well-known machine learning algorithms in a ready platform. Similarly, for the survey data analysis we will use similar approach to co-relate the user view point for such system. It will also help us to find the perception of the user for the system.

BGP 네트워크 데이터 내의 이상징후 감지를 위한 인터랙티브 시각화 분석 기법 (Interactive Visual Analytic Approach for Anomaly Detection in BGP Network Data)

  • 최소미;김선영;이재연;고장혁;권구형;주재걸
    • 인터넷정보학회논문지
    • /
    • 제23권5호
    • /
    • pp.135-143
    • /
    • 2022
  • 지난 2020년부터 세계는 COVID-19 확산으로 인해 사회적 거리두기와 재택근무를 시행함에 따라 인터넷을 활용한 비디오 및 음성 관련 콘텐츠 서비스와 클라우드 컴퓨팅 활성화로 인터넷에 대한 의존도가 늘어나면서 라우팅 프로토콜 기반 실시간 스트리밍 세션이 증가하고 있다. BGP는 가장 많이 사용되는 라우팅 프로토콜로써 보안성을 향상시키기 위해 많은 연구들이 지속되고 있으나 분석의 실시간성과 알고리즘의 오탐을 판단하기 위한 시각적 분석이 부족하다. 본 논문은 정상 및 이상으로 분류된 BGP 데이터를 수집 및 전처리 후 통계적 기법과 Rule-based 기법을 융합한 이상징후 감지 알고리즘을 활용하여 실 데이터 기반으로 분석한다. 더불어 지도 및 Sankey Chart 기반 시각화 기법으로 알고리즘의 분석 결과와 직관적인 시각화 방안으로 인터랙티브한 시공간 분석 방안을 제시한다.

인플루언서 속성 분석 기반 추천 시스템 (Influencer Attribute Analysis based Recommendation System)

  • 박정련;박지원;김민우;오하영
    • 한국정보통신학회논문지
    • /
    • 제23권11호
    • /
    • pp.1321-1329
    • /
    • 2019
  • 소셜 정보망의 발달로 마케팅의 방법도 다양하게 변화되고 있다. 기존의 유명인, 경제적 지원 기반의 성공적인 마케팅방법론과 달리, 최근 인플루언서 기반 유튜브 마케팅이 큰 대세를 이루고 있다. 본 논문 에서는 처음으로 유튜브 양적 정보 및 댓글분석 기반 다각도 질적 분석을 활용하여 54개 이상의 유튜브 채널에서 인플루언서 특징을 추출하고 대표적인 주제들을 모델링하여 개인 맞춤형 영상 만족도 극대화는 물론 기업체가 새로운 아이템을 마케팅 할 때 기존의 인플루언서 특징을 참고하여 새로운 아이템의 영상을 제작하고 배포함으로써 성공적인 홍보 효과를 누릴 수 있도록 보조 수단 제공을 목적으로 한다. 유튜브 채널 별 다양한 영상의 모든 댓글을 각 문서로 가정하고 TF-IDF 및 LDA알고리즘을 적용하여 성능 극대화 향상을 보였다.

실시간 행동인식 기반 아동 행동분석 서비스 시스템 개발 (Development of a Real-time Action Recognition-Based Child Behavior Analysis Service System)

  • 오치민;김선우;박정민;조인장;김재인;이칠우
    • 스마트미디어저널
    • /
    • 제13권2호
    • /
    • pp.68-84
    • /
    • 2024
  • 본 논문에서는 행동인식 기술을 기반으로 0세에서 2세까지의 아동을 대상으로 행동 발달 지표(활동성, 사회성, 위험성)를 파악하여 고도의 복지 서비스를 제공할 수 있는 시스템과 알고리즘에 관해 기술한다. 행동인식은 0세 영아의 눕기에서 부터 2세 유아의 점프까지 총 11개 행동을 대상으로 하였으며 광주·전남지역 어린이집 3개소에서 연구용으로 제공받은 실제 영상으로부터 직접 취득한 데이터를 학습에 사용하였다. 11개 행동에 대해 425개 클립 영상에서 1,867개 행동 데이터셋을 구축하여 학습한 결과 평균 97.4%의 인식정확도를 확인하였다. 또 실세계 적용을 위해 행동분석 장치인 엣지 비디오 분석기(Edge Video Analyzer, EVA)를 제작하였고 이 장치 위에 4채널 영상에서 최대 30명까지 실시간 행동인식이 가능한 영역별 랜덤 프레임 선택 기반 PoseC3D 알고리즘을 구현하였다. 개발된 시스템은 3곳의 어린이집에 설치되어 10명의 보육교사에 의해 1개월 간 실증테스트가 진행되었고 설문조사 결과 체감 정확도는 91점, 서비스 만족도는 94점으로 평가되었다.

Signal Processing Algorithm to Reduce RWR Electro-Magnetic Interference with Tail Rotor Blade of Helicopter

  • Im, Hyo-Bin;Go, Eun-Kyoung;Jeong, Un-Seob;Lyu, Si-Chan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.117-124
    • /
    • 2009
  • In the environment where various and complicated threat signals exist, RWR (Radar Warning Receiver), which can warn pilot of the existence of threats, has long been a necessary electronic warfare (EW) system to improve survivability of aircraft. The angle of arrival (AOA) information, the most reliable sorting parameter in the RWR, is measured by means of four-quadrant amplitude comparison direction finding (DF) technique. Each of four antennas (usually spiral antenna) of DF unit covers one of four quadrant zones, with 90 degrees apart with nearby antenna. According to the location of antenna installed in helicopter, RWR is subject to signal loss and interference by helicopter body and structures including tail bumper, rotor blade, and so on, causing a difficulty of detecting hostile emitters. In this paper, the performance degradation caused by signal interference by tail rotor blades has been estimated by measuring amplitude video signals into which RWR converts RF signals in case a part of antenna is screened by real tail rotor blade in anechoic chamber. The results show that corruption of pulse amplitude (PA) is main cause of DF error. We have proposed two algorithms for resolving the interference by tail rotor blades as below: First, expand the AOA group range for pulse grouping at the first signal analysis phase. Second, merge each of pulse trains with the other, that signal parameter except PRI and AOA is similar, after the first signal analysis phase. The presented method makes it possible to use RWR by reducing interference caused by blade screening in case antenna is screened by tail rotor blades.

소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크 (Context Sharing Framework Based on Time Dependent Metadata for Social News Service)

  • 가명현;오경진;홍명덕;조근식
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.39-53
    • /
    • 2013
  • 인터넷의 발달과 SNS의 등장으로 정보흐름의 방식이 크게 바뀌었다. 이러한 변화에 따라 소셜 미디어가 급부상하고 있으며 소셜 미디어와 비디오 콘텐츠가 융합된 소셜 TV, 소셜 뉴스의 중요성이 강조되고 있다. 이러한 환경 속에서 사용자들은 단순히 콘텐츠를 탐색만 하는 것이 아니라 같은 콘텐츠를 이용하고 있는 친구들이나 지인들과 콘텐츠에 대한 정보나 경험들을 공유하고 더 나아가 새로운 콘텐츠를 만들어내기도 한다. 하지만 기존의 소셜 뉴스에서는 이러한 사용자들의 특성을 반영해 주지 못하고 있다. 특히 이용자들의 참여성만을 고려하고 있어서 서비스간의 차별화가 어렵고 뉴스 콘텐츠에 대한 정보나 경험 공유 시 컨텍스트 공유가 어렵다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 뉴스를 내용별로 분할하고 분할된 뉴스에서 추출된 시간 종속적인 메타데이터를 제공하는 프레임워크를 제안한다. 제안하는 프레임워크에서는 스토리 분할 방법을 이용하여 뉴스 대본을 내용별로 분할한다. 또한 뉴스 전체내용을 대표하는 태그, 분할된 뉴스를 나타내는 서브 태그, 분할된 뉴스가 비디오에서 시작하는 위치 즉, 시간 종속적인 메타데이터를 제공한다. 소셜 뉴스 이용자들에게 시간 종속적인 메타데이터를 제공한다면 이용자들은 전체의 뉴스 내용 중에 자신이 원하는 부분만을 탐색 할 수 있으며 이 부분에 대한 견해를 남길 수 있다. 그리고 뉴스의 전달이나 의견 공유 시 메타데이터를 함께 전달함으로써 전달하고자 하는 내용에 바로 접근이 가능하며 프레임워크의 성능은 추출된 서브 태그가 뉴스의 실제 내용을 얼마나 잘 나타내 주느냐에 따라 결정된다. 그리고 서브 태그는 스토리 분할의 정확성과 서브 태그를 추출하는 방법에 따라 다르게 추출된다. 이 점을 고려하여 의미적 유사도 기반의 스토리 분할 방법을 프레임워크에 적용하였고 벤치마크 알고리즘과 성능 비교 실험을 수행하였으며 분할된 뉴스에서 추출된 서브 태그들과 실제 뉴스의 내용을 비교하여 서브 태그들의 정확도를 분석하였다. 결과적으로 의미적 유사도를 고려한 스토리 분할 방법이 더 우수한 성능을 보였으며 추출된 서브 태그들도 컨텍스트와 관련된 단어들이 추출 되었다.

POCS 이론을 이용한 개선된 S&A 방법에 의한 영상의 화질 향상 (Image Resolution Enhancement by Improved S&A Method using POCS)

  • 윤수아;이태균;이상헌;손명규;김덕규;원철호
    • 한국멀티미디어학회논문지
    • /
    • 제14권11호
    • /
    • pp.1392-1400
    • /
    • 2011
  • 최근 대부분의 디지털 이미지 응용분야에서는 영상 처리 및 분석을 위해 고해상도 이미지나 비디오가 요구되고 있다. 한편, 일반적인 영상획득시스템으로부터 획득한 영상신호는 획득하는 과정에서 물리적 영향, 제조 기술의 한계 및 환경적인 영향 등으로 인하여 영상의 화질 저하를 가져온다. 이러한 문제를 해결하기위해 연구되고 있는 방법 중 하나인 초해상도 복원 기술은 동일한 물체를 촬영한 다수의 저해상도 영상으로 고해상도 영상을 만들어내는 영상복원기술이다. 본 논문에서는 S&A (Shift & Add) 방법에 POCS (Projection onto Convex Sets) 이론을 적용하여 기존의 방법보다 개선된 알고리즘을 제안한다. 기존의 알고리즘은 잡음에 약하다는 문제점이 있다. 이를 해결하기 위해 제안한 방법에서는 복원단계에 사용되는 참조영상을 POCS이론에 적용하여 기존의 S&A방법과 결합하였다. 또한 광학적 왜곡에 해당하는 카메라 블러(blur) 연산자로 주파수 영역에서 BLPF (Butterworth Low-pass Filter)를 사용하여 기존방법의 문제점인 링잉현상을 해결하였다. 실험결과를 통해 잡음에 강하고 영상의 고주파영역을 향상시킨 제안한 초해상도 방법의 우수성을 확인하였고, 객관적 평가를 위해 기존의 방법과 PSNR (peak signal to noise ratio)을 비교하였다.

연속적인 배경 모델 학습을 이용한 코드북 기반의 전경 추출 알고리즘 (Codebook-Based Foreground Extraction Algorithm with Continuous Learning of Background)

  • 정재영
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권4호
    • /
    • pp.449-455
    • /
    • 2014
  • 이동 물체의 검출은 비디오 감시, 보행자의 행동 분석과 같은 컴퓨터 시각 분야에서 매우 중요한 전처리 작업이다. 이는 실제 외부 환경을 대상으로 할 때, 영상 시퀀스에 존재하는 배경의 불규칙한 움직임, 조명 변화, 그림자, 배경 물체의 위상 변화 및 잡음 등으로 인하여 매우 어려운 작업이다. 본 논문에서는 코드북 기반의 전경 검출 알고리즘을 제안한다. 코드북은 입력 영상으로부터 얻어지는 배경화소에 대한 정보 데이터베이스이다. 먼저, 첫 번째 프레임을 배경 영상으로 가정하고 이를 입력 영상과 비교하여 차 영상을 구한다. 구해진 차 영상에는 순수한 이동 물체뿐만 아니라, 잡음까지 포함된다. 둘째로, 전경으로 검출된 화소의 색상과 밝기 값을 가지고 코드북을 조사하여 존재하는 경우 잘못 추출된 전경 화소로 판단하고 전경에서 제거한다. 마지막으로, 다음번 입력되는 프레임을 반복 처리하기 위하여 배경 영상을 새롭게 갱신하는데, 배경 화소로 검출된 화소의 경우에는 현재의 입력 영상으로부터 추정되며, 전경 화소로 검출된 경우에는 이전 배경 영상의 화소 값을 복사하여 사용한다. 제안한 알고리즘을 PETS2009 데이터에 적용한 결과를 GMM 알고리즘과 표준 코드북 알고리즘의 결과와 비교하여 보인다.