This paper describes the grenade counting system developed for DPICM submunition analysis using the infrared video streams, and its some video stream processing technique. The video stream data processing procedure consists of four sequences; Analog infrared video stream recording, video stream capture, video stream pre-processing, and video stream analysis including the grenade counting. Some applications of this algorithms to real bursting test has shown the possibility of automation for submunition counting.
Over the last few years, streaming audio and video content on Internet sites has increased at unprecedented rates. The predominant method of delivering video over the current Internet is video streaming such as SureStream or Intelligent Stream. Since each method provides the client with only one data stream from one server, it often suffers from poor qualify of pictures in the case of network link congestion. In this paper, we propose a novel method of delivering video stream based on wavelet to a client by utilizing multi-threaded parallel connections from the client to multiple servers and to provides a better way to address the scalability functionalities. The experimental results show that the video quality delivered by the proposed multithreaded stream could significantly be improved over the conventional single video stream methods.
동영상 어댑테이션 시스템은 네트워크 제약, 클라이언트 제약 등을 만족하면서, 동영상의 품질이 최대가 되도록 동영상을 변환해 주는 시스템을 말한다. 본 논문에서는 정적으로 중간 동영상과 품질측정에 관한 정보를 생성해두는 준-동적 어댑테이션 시스템을 제안한다. 중간 동영상은 원본 동영상의 해상도를 반으로 줄여가며 생성되어, 서버에 저장된다. 품질 측정에 관한 정보는 프레임 율 별 부드러운 정도의 수치와, 픽셀 당 비트 량 별 선명한 정도의 수치에 대한 테이블을 정적으로 생성해 둔 것이다. 이런 중간 결과물들은 클라이언트에서의 서비스 품질을 고려하며 동적으로 동영상을 변환 할 때 가능한 빠르게 동영상 변환이 수행될 수 있도록 해준다. 실험 결과 제안된 어댑테이션 시스템은 기존의 동적 어댑테이션 시스템에 비해 약 30배정도 빠르게 어댑테이션을 수행하는 반면, 약 2%정도의 품질 저하가 있었고 중간동영상을 저장하기 위한 추가적인 서버공간이 필요하다는 것을 확인 할 수 있었다.
In a video-on-Demand(VOD) service, a server has to return to he normal playback quickly at a certain new frame position after interactive operations such as jump or last playback. In this paper, we propose an efficient scheme to write a transmission schedule for a playback restart of a video stream at a new frame position after interactive operations. The proposed scheme is based on convergence characteristics, that is transmission schedules with different playback startup frame position in a video stream meet each other at some frame position. The scheme applies a bandwidth smoothing from a new frame position to a convergence position without considering all remaining frames of a video stream. And then the scheme transmits video dta according to the new schedule from the new frame position to the convergence position, and then transmits the remaining video data according to the reference schedule from the convergence position, and then transmits the remaining video data according to the reference schedule from the convergence position to the last frame position. In this paper, we showed that there existed the convergence position corresponding to nay frame position in a video stream through many experiments based on MPEG-1 bit trace data. With the convergence we reduced the computational overhead of a bandwidth smoothing, which was applied to find a new transmission schedule after interactive operations. Also, storage overhead is greatly reduced by storing pre-calculated schedule information up to the convergence position for each I frame position of a video stream with video data off-line. By saving information on a transmission schedule off-line along with the video data and searching the schedule corresponding to the specified restarting frame position, we expect the possibility of normal playback of a video stream with small tolerable playback startup delay.
This paper discusses a searching method for special markers attached with persons in a surveillance video stream. The marker is a small plate with infrared LEDs, which is called a spatiotemporal marker because it shows a 2-D sequential pattern synchronized with video frames. The search is based on the motion vectors which is the same as one in video compression. The experiments using prototype markers show that the proposed method is practical. Though the method is applicable to a video stream independently, it can decrease total computation cost if motion vector analyses of a video compression and the proposed method is unified.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권4호
/
pp.938-958
/
2024
Unsupervised Video Object Segmentation (UVOS) is a highly challenging problem in computer vision as the annotation of the target object in the testing video is unknown at all. The main difficulty is to effectively handle the complicated and changeable motion state of the target object and the confusion of similar background objects in video sequence. In this paper, we propose a novel deep Dual-stream Co-enhanced Network (DC-Net) for UVOS via bidirectional motion cues refinement and multi-level feature aggregation, which can fully take advantage of motion cues and effectively integrate different level features to produce high-quality segmentation mask. DC-Net is a dual-stream architecture where the two streams are co-enhanced by each other. One is a motion stream with a Motion-cues Refine Module (MRM), which learns from bidirectional optical flow images and produces fine-grained and complete distinctive motion saliency map, and the other is an appearance stream with a Multi-level Feature Aggregation Module (MFAM) and a Context Attention Module (CAM) which are designed to integrate the different level features effectively. Specifically, the motion saliency map obtained by the motion stream is fused with each stage of the decoder in the appearance stream to improve the segmentation, and in turn the segmentation loss in the appearance stream feeds back into the motion stream to enhance the motion refinement. Experimental results on three datasets (Davis2016, VideoSD, SegTrack-v2) demonstrate that DC-Net has achieved comparable results with some state-of-the-art methods.
본 논문에서는 반복적인 인코딩/디코딩 작업 없이 모바일 단말기나 현재 네크웍 상황에 적합한 동영상 스트림을 생성하는 새로운 동적 동영상 적응변환 방법을 제안한다. 제안한 방법에서는 MPEG-1/-2/-4와 같은 비디오 코덱의 특성을 부호화 된 동영상 스트림 크기와 품질에 초점을 맞추어 미리 분석하고, 이를 코덱 의존적인 특성 테이블로 프록시에 저장한다. 이런 특성 테이블 내용과 단말기가 요청한 동영상에 대한 최고 품질 스트림의 크기 및 품질 정보를 이용하여 요청한 모바일 단말기에 적합한 동영상 스트림의 크기 및 품질을 동적으로 예측할 수 있다. 제안한 방법에서는 이런 예측을 바탕으로 동영상의 최대 품질을 유지하며 모바일 단말기의 공간 제약을 만족하는 적응화 된 동영상 스트림 버전을 반복적인 인코딩/디코딩 작업 없이 생성한다. 실험 결과 제안한 방법은 5% 미만의 오차율로 매우 빠르게 동적 동영상 적응변환을 수행함을 알 수 있었다. 제안한 방법은 다양한 비디오 코덱으로 부호화 된 인터넷상의 동영상을 빠르게 변환하는 모바일 단말기를 위한 프록시 서버에 사용될 수 있을 것이다.
The compression of video for both full HD and UHD requires the inclusion of extra vertical lines to every video frame, named as the DTV essential hidden area (DEHA), for the effective functioning of the MPEG-2/4/H encoder, stream, and decoder. However, while the encoding/decoding process is dependent on the DEHA, the DEHA is conventionally viewed as a redundancy in terms of channel utilization or storage efficiency. This paper proposes a block mode DEHA method to more effectively utilize the DEHA. Partitioning video block images and then evenly filling the representative DEHA macroblocks with the average DC coefficient of the active video macroblock can minimize the amount of DEHA data entering the compressed video stream. Theoretically, this process results in smaller DEHA data entering the video stream. Experimental testing of the proposed block mode DEHA method revealed a slight improvement in the quality of the active video. Outside of this technological improvement to video quality, the attractiveness of the proposed DEHA method is also heightened by the ease that it can be implemented with existing video encoders.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권10호
/
pp.3668-3684
/
2021
Video action recognition is widely used in video surveillance, behavior detection, human-computer interaction, medically assisted diagnosis and motion analysis. However, video action recognition can be disturbed by many factors, such as background, illumination and so on. Two-stream convolutional neural network uses the video spatial and temporal models to train separately, and performs fusion at the output end. The multi segment Two-Stream convolutional neural network model trains temporal and spatial information from the video to extract their feature and fuse them, then determine the category of video action. Google Xception model and the transfer learning is adopted in this paper, and the Xception model which trained on ImageNet is used as the initial weight. It greatly overcomes the problem of model underfitting caused by insufficient video behavior dataset, and it can effectively reduce the influence of various factors in the video. This way also greatly improves the accuracy and reduces the training time. What's more, to make up for the shortage of dataset, the kinetics400 dataset was used for pre-training, which greatly improved the accuracy of the model. In this applied research, through continuous efforts, the expected goal is basically achieved, and according to the study and research, the design of the original dual-flow model is improved.
비디오 스트림들은 사용된 압축 알고리듬의 구조와 화면의 복잡도 등에 따라 다양한 형태의 트래픽이 발생함으로, 송신측과 수신측 사이의 자원할당을 어렵게 할 뿐만 아니라, 현재의 인터넷과 같은 패킷 통신망에서는 연속적인 재생을 어렵게 한다. 따라서, 본 논문에서는 멀티스트림을 이용한 비디오 스트림의 평활화 방법을 제안한다. 제안한 방법은 스트림의 형태에 따라 LDU(logical data unit)를 정의한 후 일정한 크기로 다수의 스트림으로 생성하여 전송함으로써, 평활화와 선반입 과정에서 발생하는 버퍼링 시간을 줄일 수 있을 뿐만 아니라 네트워크의 지터에도 강하면, 클라이언트의 대역폭을 최대한 활용할 수 있는 효율적인 전송 특성을 얻을 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.