In this paper, we propose an efficient method to detect shot changes in compressed MPEG video data by using reference features among video frames. The reference features among video frames imply the similarities among adjacent frames by prediction coded type of each frame. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. And the shot change detection algorithm is improved by using Fuzzy c-means (FCM) clustering algorithm. The FCM clustering algorithm uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.
본 논문에서는 비디오 스트림을 효과적으로 표현하고 저장하며, 저장된 비디오 스트림을 효율적으로 검색하는 기법을 제안한다. 각 비디오 프레임으로부터 특징(feature)들을 추출하고, 각 특징들의 수치값을 정규화 하여 [0,1] 사이의 값으로 표현하면, f 개의 특징으로 표현된 비디오 프레임은 f 차원의 공간 $[0,1]^f$ 상의 한 점으로 나타낼 수 있다. 따라서 비디오 스트림은 다차원 공간에서 점들의 궤적으로 표현될 수 있으며 이 궤적은 카메라 샷을 기준으로 비디오 세그먼트로 분할된다. 비디오 세그먼트는 세그먼트 내의 점들의 움직임 등의 정보를 나타내는 경향 벡터(trend vector)로 표현되며, 비디오 스트림 검색은 이러한 경향 벡터에 대하여 수행된다. 스포츠, 뉴스, 기록영화, 교육용 비디오 등의 비디오 스트림에 대하여 제안한 기법을 검증하였으며, 실험 결과 기존의 방법에 비하여 복원 오차율(reconstruction error rate)이 평균37% 감소되었고, 검색의 정밀도(precision)는 비슷한 수준의 재현율(recall) 및 응답 시간을 유지하면서 평균 2.1 배까지 향상되었음을 관찰할 수 있었다.
비디오 검색 및 색인은 먼저 압축 비디오에서 장면전환을 검출하여 샷(shot)으로 분리한 후 샷 내에 키프레임 특징 정보들의 유사도 비교를 통해 이루어진다. 일반적으로 내용기반 영상 및 비디오 검색에서는 컬러, 형태, 질감의 세 가지 대표적인 영상 특징들이 주로 사용된다. 그러나 여러 특징들이 결합되어 사용되는 검색 시스템이라 할지라도 각 특징들에 대한 가중치가 적합하게 부여되지 않으면 검색되는 결과 영상의 순위가 크게 변하여 검색 성능이 떨어지게 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 여러 특징들이 결합되어 사용될 때 각 특징에 대한 가중치를 적응적으로 부여해서 비디오 검색 성능을 개선하고자 한다. 제안한 방법을 3,200개 키 프레임으로 구성된 비디오 데이터베이스에서 실험을 하였고 다양한 성능평가 방법을 통해 제안한 방법이 기존 고정가중치 부여를 이용한 방법과 비교하여 검색 성능이 개선됨을 볼 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권3호
/
pp.1390-1403
/
2016
Facial expression recognition (FER) plays a very significant role in computer vision, pattern recognition, and image processing applications such as human computer interaction as it provides sufficient information about emotions of people. For video-based facial expression recognition, depth cameras can be better candidates over RGB cameras as a person's face cannot be easily recognized from distance-based depth videos hence depth cameras also resolve some privacy issues that can arise using RGB faces. A good FER system is very much reliant on the extraction of robust features as well as recognition engine. In this work, an efficient novel approach is proposed to recognize some facial expressions from time-sequential depth videos. First of all, efficient Local Binary Pattern (LBP) features are obtained from the time-sequential depth faces that are further classified by Generalized Discriminant Analysis (GDA) to make the features more robust and finally, the LBP-GDA features are fed into Hidden Markov Models (HMMs) to train and recognize different facial expressions successfully. The depth information-based proposed facial expression recognition approach is compared to the conventional approaches such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA) where the proposed one outperforms others by obtaining better recognition rates.
International journal of advanced smart convergence
/
제4권2호
/
pp.20-28
/
2015
In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.
얼굴 인식기반의 사용자 보안 시스템은 접근이 허가된 사용자의 사진이나 비디오를 이용한 공격에 취약하다는 단점을 가지고 있다. 본 연구에서는 인증되지 않은 사용자가 비디오를 이용하여 시스템에 접근할 경우 해당 공격 시도를 검출하기 위한 위변조(Spoof) 검출 방법을 제안한다. 제안하는 방법은 연속된 3개의 Frame에서 푸리에 변환과 Dense-SIFT 구분자를 사용하여 400개의 실제 및 위변조 비디오 영상을 대상으로 실험한 결과 99%의 검출 정확도를 보였다.
This paper proposes a robust, imperceptible block-based digital video watermarking algorithm that makes use of the Speeded Up Robust Feature (SURF) technique. The SURF technique is used to extract the most important features of a video. A discrete multiwavelet transform (DMWT) domain in conjunction with a discrete cosine transform is used for embedding a watermark into feature blocks. The watermark used is a binary image. The proposed algorithm is further improved for robustness by an error-correction code to protect the watermark against bit errors. The same watermark is embedded temporally for every set of frames of an input video to improve the decoded watermark correlation. Extensive experimental results demonstrate that the proposed DMWT domain video watermarking using SURF features is robust against common image processing attacks, motion JPEG2000 compression, frame averaging, and frame swapping attacks. The quality of a watermarked video under the proposed algorithm is high, demonstrating the imperceptibility of an embedded watermark.
최근 들어 멀티 미디어 정보의 사용이 급격히 증가하면서, 여러 미디어 형태 중 비디오가 많은 각광을 받으며, 다른 타입의 모든 미디어 정보를 하나의 자료 흐름으로 묶고 있다. 디지털 비디오의 실용 가능성은 크게 증대되고 있으나 비디오의 방대한 길이와 비구조적 형식 때문에 효과적인 비디오의 접근은 어려운 실정이다. 따라서 최근에 개발되는 영상과 비디오 정보 관리 시스템은 본 논문에서 제안하는 사용자의 최소 상호 작용과 비디오 구조의 명확한 정의를 필요로 한다. 본 논문에서는 사용자가 쉽게 비디오 내용을 요약한 형태로 보고, 임의로 접근 할 수 있도록 클러스터링 기반 비디오 계층 구조 구축 시스템을 제시한다. 제안된 시스템은 크게 샷 경계면 검출과 계층 구조 구축 단계로 이루어진다. 샷 경계면 검출 단계에서는 복수 특징들을 추출하고, 이웃한 프레임 쌍들에 대한상호관계를 고려한 시간 적응적 필터링 기법을 이용하여 오판될 수 있는 왜곡 성분을 제거함으로써 성능을 향상시켰다. 처리된 복수 특징들은 임계치를 필요로 하지 않는 k-means 클러스터링의 입력으로 사용되어 샷 경계면을 검출한다. 결과인 순차적인 샷 리스트는 시간 지역성과 장면 구조를 효과적으로 모델링하는 특성을 가진 지능적 비감독 클러스터링 기법에 의해 계층 구조로 표현된다. 실험은 정적 영화 비디오와 동적 영화 비디오를 대상으로 수행하였으며, 샷 경계면 검출에서는 평균적으로 95%의 정확성을 보였으며 장면 경계면 검출을 하는 비디오 계층 구조 구축에서도 어느 정도 정확한 장면 경계면 검출 결과를 보였다.
디지털 미디어 데이터의 증가에 따라 디지털 미디어를 효과적으로 관리하고 사용하기 위하여 다양한 비디오 색인 및 비디오 시퀀스 정합 알고리즘이 제안되었다. 본 논문에서는 급격한 밝기 변화를 가지는 비디오 시퀀스에 대해서 효율적인 비디오 색인 알고리즘과 비디오 시퀀스 질의에 대한 비디오 시퀀스 정합 알고리즘을 제안한다. 급격한 밝기 변화를 고려한 비디오 색인의 정확도를 향상시키고 계산량을 줄이기 위해 제안한 알고리즘은 칼라 특성뿐만 아니라 에지 특성도 함께 사용하였으며 기존의 알고리즘에 비해 현저한 성능 향상을 보였다. 제안한 알고리즘은 먼저 칼라 히스토그램을 사용하여 후보 샷경계 지점을 추출하고 에지 정합과 밝기 보상을 이용하여 후보점들이 샷경계인지 밝기 변화인지를 결정한다 장면내의 밝기 변화가 작은 경우 에지 정합과 밝기 보상은 샷경계에서만 일어난다. 실험 결과 제안한 방법은 기존의 방법에 비해 비슷한 계산량으로 현저히 향상된 성능과 효율을 보였다.
본 논문은 불법복제된 DTV 방송프로그램의 온라인 불법전송을 차단하기 위한 비디오 복사본 검출 알고리즘을 제안한다. 제안한 알고리즘은 급격한 휘도 변화가 나타나는 방송영상의 비디오 프레임을 선별하여 키프레임(keyframe)을 구성한 후, 키프레임의 시 공간적 특징정보를 추출하여 사전에 등록된 방송영상 저작물들의 특징정보와 비교함으로써 해당 방송영상의 불법복제 여부를 판별하는 동영상 필터링(filtering) 기능을 제공한다. 특히 모든 프레임을 이용하지 않고 키프레임만을 추출함으로써 대용량 방송영상물의 저작권 침해 여부를 효율적으로 판단할 수 있으며, 온라인 전송과정에서 빈번히 적용되는 영상비 변환, 로고 삽입, 자막 삽입, 화질 열화 및 해상도 감소 등의 다양한 동영상 편집효과에도 강인함을 실험을 통하여 확인하였다. 또한 기존 알고리즘들과의 성능비교실험을 통하여 상대적 우수성을 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.