동영상 데이터는 시간에 따른 정보는 물론이고, 많은 정보량과 함께 잡음도 포함하고 있기 때문에 이에 대한 간단한 표현을 학습하는 것은 쉽지 않다. 본 연구에서는 이와 같은 동영상 데이터를 추상적이면서 보다 간단하게 표현할 수 있는 순차 데이터간의 유사도 표현 방법과 딥러닝 학습방법을 제안한다. 이는 동영상을 구성하는 이미지 데이터 벡터들 사이의 유사도를 내적으로 표현할 때 그것들이 서로 최대한의 정보를 가질 수 있도록 하는 함수를 구하고 학습하는 것이다. 실제 데이터를 통하여 제안된 방법이 기존의 동영상 분류 방법들보다도 뛰어난 분류 성능을 보임을 확인하였다.
앵커 장면 검출은 내용기반 뉴스 비디오 색인과 검색 시스템에서 비디오 장면의 의미적 파싱과 색인을 추출하는데 중요한 역할을 한다. 이 논문은 스포츠 뉴스의 단위 구조화를 위해서 뉴스 동영상에 존재하는 앵커 구간을 구분해내는 효율적인 알고리즘을 제안한다. 앵커 장면을 검출하기 위해서, 우선 MPEG4 압축 비디오에서 DCT 계수치와 모션 방향성 정보를 이용하여 앵커 후보 장면을 결정한다. 그리고 검출된 후보앵커 장면으로부터 영상처리 방법을 활용하여 뉴스 비디오를 앵커 장면과 비앵커(스포츠) 장면으로 분류한다. 제안된 방법은 앵커 장면 검출 실험에서 평균적으로 98%의 정확도와 재현율을 얻었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권12호
/
pp.4476-4491
/
2021
Video service providers tend to face user network problems in the process of transmitting video streams. They strive to provide user with superior video quality in a limited bitrate environment. It is necessary to accurately determine the target bitrate range of the video under different quality requirements. Recently, several schemes have been proposed to meet this requirement. However, they do not take the impact of visual influence into account. In this paper, we propose a new multi-category model to accurately predict the target bitrate range with target visual quality by machine learning. Firstly, a dataset is constructed to generate multi-category models by machine learning. The quality score ladders and the corresponding bitrate-interval categories are defined in the dataset. Secondly, several types of spatial-temporal features related to VMAF evaluation metrics and visual factors are extracted and processed statistically for classification. Finally, bitrate prediction models trained on the dataset by RandomForest classifier can be used to accurately predict the target bitrate of the input videos with target video quality. The classification prediction accuracy of the model reaches 0.705 and the encoded video which is compressed by the bitrate predicted by the model can achieve the target perceptual quality.
영상실감증대를 위한 시각, 청각, 촉각정보의 제시방식에 대해서는 많은 진보가 이루어 졌다. 반면 후각은 정의하기 어렵고 다루기 까다롭기 때문에 관련연구를 찾아보기 어렵다. 본 연구에서는 후각정보를 통한 영상실감증대 연구의 첫걸음으로 후각정보에 대한 사용자 수용도를 조사한 후 이에 근거하여 다양한 영상을 분류하였다. 이를 위해 먼저 영상에 냄새가 존재하는지 (냄새존재여부), 그 냄새가 실감을 증대시키는지 (실감증대효과), 영상과 함께 해당 냄새를 경험하고 싶은지 (냄새제시선호)라는 세가지 질문을 선정하였다. 각 질문들에 높은 혹은 낮은 점수를 받을 만한 다양한 장르의 영상 (51)개를 수집한 후, 참가자들에게 하나씩 영상을 시청하게 한 후 위의 세가지 질문에 대해 7점 척도로 평정하게 하였다. 영상분류를 위해 두 질문씩 쌍으로 묶어 각 질문의 척도를 2차원 평면의 X, Y축으로 설정한 후 평정값을 이용하여 영상분류를 위한 산포도를 구성하였다. 2차원 평면의 서로 다른 사분면에 위치한 영상군집들은 영상실감증대를 위한 후각정보 제시에 중요한 시사점을 줄 것으로 기대한다.
압축 상태에서 비디오 구조화 및 분류를 하기 위해서는 먼저 압축된 비디오에서 장면전환을 검출해서 비디오를 샷(shot)으로 분리하고 샷내 움직임 정보에 따라 샷을 특징화해야 한다. 장면전환을 검출하는 방법에는 DC 영상의 분산값 이나 복원영상의 에지 픽셀의 분포를 이용한 방법, P-픽쳐의 인트라 블록의 개수를 이용한 방법 등이 있으며 움직임에 따른 샷의 특징 분류는 움직임 벡터의 각 성분들의 평균값을 이용하는 것이 일반적인 방법이다. 그러나 움직임 벡터를 이용한 샷 움직임 분류 방법은 움직임 벡터 자체가 블록의 국부적(local) 움직임을 나타내는 것이므로 글로벌(global)한 카메라 동작을 예측하기 위해서는 많은 제약이 있다. 따라서 본 논문에서는 이러한 것을 보완하기 위해서 MPEG으로 압축된 비디오에서 인트라 프레임을 부분적으로 복호화 하고 빠른 1차원적인 연산을 통해 수평 및 수직 방향으로 평균 밝기 값의 변화 방향을 추정하여 좀더 정확히 샷내 카메라의 움직임을 분류하고자 한다.
시민들의 안전을 위한 영상통합관제센터에는 수많은 CCTV 카메라가 연결되어 많은 채널의 영상을 소수의 관제사가 관제하는데 어려움이 있다. 본 논문에서는 많은 채널의 영상을 효과적으로 관제하기 위하여 안전지도와 연계한 지능형 영상보안 시스템을 제안한다. 안전지도는 범죄 발생 빈도를 데이터베이스로 구축하고, 범죄 발생 위험 정도를 표현하고, 범죄 취약 계층인 여성이 범죄 위험 지역으로 진입하면 영상통합관제센터의 관제사가 주목할 수 있도록 한다. 성별 구분을 보행자 검출 및 추적 그리고 딥러닝을 통하여 성별을 구분한다. 보행자 검출은 Adaboost 알고리즘을 이용하고, 보행자 추적을 위한 확률적 데이터 연관 필터(probablistic data association filter)를 적용한다. 보행자의 성별을 구분하기 위하여 비교적 간단한 AlexNet를 적용하여 성별을 판별한다. 실험을 통하여 제안하는 성별 구분 방법이 종래의 알고리즘에 비하여 성별 구분에 효과적임을 보인다. 또한 안전지도와 연계한 지능형 영상보안 시스템 구현 결과를 소개한다.
Recently, gender classification has attracted a great deal of attention in the field of video surveillance system. It can be useful in many applications such as detecting crimes for women and business intelligence. In this paper, we proposed a method which can detect pedestrians from CCTV video and classify the gender of the detected objects. So far, many algorithms have been proposed to classify people according the their gender. This paper presents a gender classification using convolutional neural network. The detection phase is performed by AdaBoost algorithm based on Haar-like features and LBP features. Classifier and detector is trained with data-sets generated form CCTV images. The experimental results of the proposed method is male matching rate of 89.9% and the results shows 90.7% of female videos. As results of simulations, it is shown that the proposed gender classification is better than conventional classification algorithm.
현재 Action classification model은 computational resources의 제약으로 인해 video전체의 frame으로 학습하지 못한다. Model에 따라 다르지만, 대부분의 경우 하나의 action을 학습시키기 위해 보통 많게는 32frame, 적게는 8frame으로 model을 학습시킨다. 본 논문에서는 이 한계를 극복하기 위해 하나의 video의 많은 frame들을 mix-up과정을 거쳐 한장의 frame에 여러장의 frame 정보를 담고자 한다. 이 과정에서 video의 시간에 따른 변화(temporal- dynamics)를 손상시키지 않기 위해 linear mix-up이라는 방법을 제안하고 그 성능을 증명하며, 여러장의 frame을 mix-up시켜 모델의 성능을 향상시키는 가능성에 대해 논하고자 한다.
일반적으로 감시영상에서 움직이는 물체들은 배경빼기 혹은 프레임 차를 이용하여 추출된다. 하지만 객체에 의해서 만들어지는 그림자는 심각한 탐지의 오류를 야기시킬 수 있다. 특히, 도로 상에 설치된 감시카메라로부터 획득된 영상으로부터 차량 정보를 분석할 때, 차량에 의해서 생성되는 그림자로 인하여 차량의 모양을 왜곡시켜 부정확한 결과를 만든다. 때문에 그림자의 제거는 감시 영상 내에서의 정확한 객체 추출을 위해서 반드시 필요하다. 본 논문은 도로감시영상 내에서 움직이는 차량의 차종판별 성능을 향상시키기 위한 움직이는 객체 내에 만들어지는 그림자를 제거한다. 제거된 객체의 영역은 소실점을 이용하여 3차원 객체로 피팅(Fitting)한 후 측정된 데이터를 감독 학습하여 원하는 차종 판별결과를 얻는데 사용한다. 실험은 3가지 기계학습 방법{IBL, C4.5, NN(Neural Network)}을 이용하여 그림자의 제거가 차종의 판별성능에 미치는 결과의 평가한다.
In this paper, a kidnapping detection scheme in which human pose estimation is used to classify accurately between kidnapping cases and normal ones is proposed. To estimate human poses from input video, human's 10 joint information is extracted by OpenPose library. In addition to the features which are used in the previous study to represent the size change rates and the regularities of human activities, the human pose estimation features which are computed from the location of detected human's joints are used as the features to distinguish kidnapping situations from the normal accompanying ones. A frame-based kidnapping detection scheme is generated according to the selection of J48 decision tree model from the comparison of several representative classification models. When a video has more frames of kidnapping situation than the threshold ratio after two people meet in the video, the proposed scheme detects and notifies the occurrence of kidnapping event. To check the feasibility of the proposed scheme, the detection accuracy of our newly proposed scheme is compared with that of the previous scheme. According to the experiment results, the proposed scheme could detect kidnapping situations more 4.73% correctly than the previous scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.